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Preface

‘It is not the business of the botanist to eradicate the weeds. Enough for
him if he can tell us just how fast they grow.’

C. Northcote Parkinson (1958), Parkinson’s Law

The maligned botanist has a good deal to be said for him in the company
of rival gardeners, each propagating his own idea about the extent and the
growth of thorns and thistles in the herbaceous border, and each with a
patent weedkiller. I hope that this book will perform a similar role in the
social scientist’s toolshed. It does not deal with theories of the development
of income distribution, of the generation of inequality, or of other social
weeds, nor does it supply any social herbicides. However, it does give a guide
to some of the theoretical and practical problems involved in an analysis
of the extent of inequality thus permitting an evaluation of the diverse
approaches hitherto adopted. In avoiding patent remedies for particular
unwanted growths, one finds useful analogies in various related fields—for
example, some techniques for measuring economic inequality have impor-
tant counterparts in sociological and political studies. Thus, although I have
written this as an economist, I would like to think that students in these
related disciplines will be interested in this material.

This book is deliberately limited in what it tries to do as far as expounding
theory, examining empirical evidence, or reviewing the burgeoning litera-
ture is concerned. For this reason, a set of notes for each chapter is provided
on pages 178 ff. The idea is that if you have not already been put off the
subject by the text, then you can follow up technical and esoteric points in
these notes, and also find a guide to further reading.

A satisfactory discussion of the techniques of inequality measurement
inevitably involves the use of some mathematics. However, I hope that
people who are allergic to symbols will nevertheless read on. If you are
allergic, you may need to toil a little more heavily round the diagrams that
are used fairly extensively in Chapters 2 and 3. In fact the most sophisticated
piece of notation which it is essential that all should understand in order to
read the main body of the text is the expression
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Preface

n
24
i=1

representing the sum of n numbers indexed by the subscript i, thus: x; +
X2+ X3+ ...+ X,. Also it is helpful if the reader understands differentiation,
though this is not strictly essential. Those who are happy with mathematical
notation may wish to refer directly to Appendix A in which formal defini-
tions are listed, and where proofs of some of the assertions in the text are
given. Appendix A also serves as a glossary of symbols used for inequality
measures and other expressions.

Associated with this book there is a website with links to data sources,
downloadable spreadsheets of constructed datasets, and examples and pre-
sentation files showing the step-by-step developments of some arguments
and techniques. Although you should be able to read the text without having
to use the website, I am firmly of the opinion that many of the issues in
inequality measurement can only be properly understood through experi-
ence with practical examples. There are quite a few numerical examples
included in the text and several more within the questions and problems
at the end of each chapter: you may well find that the easiest course is to
pick up the data for these straight from the website rather than doing them
by hand or keying the numbers into a computer yourself. This is described
further in the Appendix A (page 177), but to get going with the data you
only go to the welcome page of the website.
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1

First Principles

‘It is better to ask some of the questions than to know all of the answers.’
James Thurber (1945), The Scotty Who Knew Too Much

‘Inequality’ is in itself an awkward word, as well as one used in connection
with a number of awkward social and economic problems. The difficulty is
that the word can trigger quite a number of different ideas in the mind of a
reader or listener, depending on his training and prejudice.

‘Inequality’ obviously suggests a departure from some idea of equality. This
may be nothing more than an unemotive mathematical statement, in which
case ‘equality’ just represents the fact that two or more given quantities
are the same size, and ‘inequality’ merely relates to differences in these
quantities. On the other hand, the term ‘equality’ evidently has compelling
social overtones as a standard which it is presumably feasible for society
to attain. The meaning to be attached to this is not self-explanatory. Some
years ago Professors Rein and Miller revealingly interpreted this standard of
equality in nine separate ways

* One-hundred-percentism: in other words, complete horizontal equity—
‘equal treatment of equals’.

e The social minimum: here one aims to ensure that no one falls below
some minimum standard of well-being.

* Equalization of lifetime income profiles: this focuses on inequality of future
income prospects, rather than on the people’s current position.

* Mobility: that is, a desire to narrow the differentials and to reduce the
barriers between occupational groups.

e Economic inclusion: the objective is to reduce or eliminate the feeling of
exclusion from society caused by differences in incomes or some other
endowment.
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 Income shares: society aims to increase the share of national income (or
some other ‘cake’) enjoyed by a relatively disadvantaged group—such as
the lowest tenth of income recipients.

e Lowering the ceiling: attention is directed towards limiting the share of
the cake enjoyed by a relatively advantaged section of the population.

 Avoidance of income and wealth crystallization: this just means eliminating
the disproportionate advantages (or disadvantages) in education, polit-
ical power, social acceptability and so on that may be entailed by an
advantage (or disadvantage) in the income or wealth scale.

e International yardsticks: a nation takes as its goal that it should be no
more unequal than another ‘comparable’ nation.

Their list is probably not exhaustive and it may include items which you
do not feel properly belong on the agenda of inequality measurement; but it
serves to illustrate the diversity of views about the nature of the subject—Ilet
alone its political, moral or economic significance—which may be present
in a reasoned discussion of equality and inequality. Clearly, each of these
criteria of ‘equality’ would influence in its own particular way the manner
in which we might define and measure inequality. Each of these potentially
raises particular issues of social justice that should concern an interested
observer. And if I were to try to explore just these nine suggestions with the
fullness that they deserve, I should easily make this book much longer than
I wish.

In order to avoid this mishap let us drastically reduce the problem by
trying to set out what the essential ingredients of a Principle of Inequality
Measurement should be. We shall find that these basic elements underlie a
study of equality and inequality along almost any of the nine lines suggested
in the brief list given above.

The ingredients are easily stated. For each ingredient it is possible to use
materials of high quality—with conceptual and empirical nuances finely
graded. However, in order to make rapid progress, I have introduced some
cheap substitutes which I have indicated in each case in the following
list:

* Specification of an individual social unit such as a single person, the
nuclear family or the extended family. I shall refer casually to ‘persons’.

e Description of a particular attribute (or attributes) such as income,
wealth, land-ownership or voting strength. I shall use the term ‘income’
as a loose coverall expression.

* A method of representation or aggregation of the allocation of ‘income’
among the ‘persons’ in a given population.
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The list is simple and brief, but it will take virtually the whole book to deal
with these fundamental ingredients, even in rudimentary terms.

1.1 A preview of the book

The final item on the list of ingredients will command much of our atten-
tion. As a quick glance ahead will reveal we shall spend quite some time
looking at intuitive and formal methods of aggregation in Chapters 2 and 3.
In Chapter 2 we encounter several standard measurement tools that are often
used and sometimes abused. This will be a chapter of ‘ready-mades’ where
we take as given the standard equipment in the literature without particular
regard to its origin or the principles on which it is based. By contrast the
economic analysis of Chapter 3 introduces specific distributional principles
on which to base comparisons of inequality. This step, incorporating explicit
criteria of social justice, is done in three main ways: social welfare analysis,
the concept of distance between income distributions, and an introduction
to the axiomatic approach to inequality measurement. On the basis of these
principles we can appraise the tailor-made devices of Chapter 3 as well as
the off-the-peg items from Chapter 2. Impatient readers who want a quick
summary of most of the things one might want to know about the properties
of inequality measures could try turning to page 74 for an instant answer.

Chapter 4 approaches the problem of representing and aggregating infor-
mation about the income distribution from a quite different direction. It
introduces the idea of modelling the income distribution rather than just
taking the raw bits and pieces of information and applying inequality mea-
sures or other presentational devices to them. In particular we deal with
two very useful functional forms of income distribution that are frequently
encountered in the literature.

In my view the ground covered by Chapter 5 is essential for an adequate
understanding of the subject matter of this book. The practical issues which
are discussed there put meaning into the theoretical constructs with which
you will have become acquainted in Chapters 2 to 4. This is where you will
find discussion of the practical importance of the choice of income defini-
tion (ingredient 1) and of income receiver (ingredient 2); of the problems
of using equivalence scales to make comparisons between heterogeneous
income units and of the problems of zero values when using certain defini-
tions of income. In Chapter 5 also we shall look at how to deal with patchy
data, and how to assess the importance of inequality changes empirically.

The back end of the book contains two further items that you may find
helpful. Appendix A has been used mainly to tidy away some of the more
cumbersome formulas which would otherwise have cluttered the text; you
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may want to dip into it to check up on the precise mathematical definitions
and results that are described verbally or graphically in the main text.
Appendix B (Notes on Sources and Literature) has been used mainly to cover
literature references which would otherwise have also cluttered the text; if
you want to follow up the principal articles on a specific topic, or to track
down the reference containing detailed proof of some of the key results, this
is where you should turn first; it also gives you the background to the data
examples found throughout the book.

Finally, a word or two about this chapter. The remainder of the chapter
deals with some of the issues of principle concerning all three ingredients on
the list; it provides some forward pointers to other parts of the book where
theoretical niceties or empirical implementation is dealt with more fully; it
also touches on some of the deeper philosophical issues that underpin an
interest in the subject of measuring inequality. It is to theoretical questions
about the second of the three ingredients of inequality measurement that
we shall turn first.

1.2 Inequality of what?

Let us consider some of the problems of the definition of a personal attribute,
such as income, that is suitable for inequality measurement. This attribute
can be interpreted in a wide sense if an overall indicator of social inequality
is required, or in a narrow sense if one is concerned only with inequality in
the distribution of some specific attribute or talent. Let us deal first with the
special questions raised by the former interpretation.

If you want to take inequality in a global sense, then it is evident that you
will need a comprehensive concept of ‘income’—an index that will serve to
represent generally a person’s well-being in society. There are a number of
personal economic characteristics which spring to mind as candidates for
such an index—for example, wealth, lifetime income, weekly or monthly
income. Will any of these do as an all-purpose attribute?

While we might not go as far as Anatole France in describing wealth as a
‘sacred thing’, it has an obvious attraction for us (as students of inequality).
For wealth represents a person’s total immediate command over resources.
Hence, for each man or woman we have an aggregate which includes the
money in the bank, the value of holdings of stocks and bonds, the value
of the house and the car, his ox, his ass, and everything that he has. There
are two difficulties with this. First, how are these disparate possessions to be
valued and aggregated in money terms? It is not clear that prices ruling in the
market (where such markets exist) appropriately reflect the relative economic
power inherent in these various assets. Second, there are other, less tangible

4
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assets which ought perhaps to be included in this notional command over
resources, but which a conventional valuation procedure would omit.

One major example of this is a person’s occupational pension rights:
having a job that entitles me to a pension upon my eventual retirement
is certainly valuable, but how valuable? Such rights may not be susceptible
to being cashed in like other assets so that their true worth is tricky to assess.

A second important example of such an asset is the presumed prerogative
of higher future incomes accruing to those possessing greater education
or training. Surely the value of these income rights should be included in
the calculation of a person’s wealth just as is the value of other income-
yielding assets such as stocks or bonds? To do this we need an aggregate of
earnings over the entire life span. Such an aggregate—'lifetime income’'—
in conjunction with other forms of wealth appears to yield the index of
personal well-being that we seek, in that it includes in a comprehensive
fashion the entire set of economic opportunities enjoyed by a person.
The drawbacks, however, are manifest. Since lifetime summation of actual
income receipts can only be performed once the income recipient is deceased
(which limits its operational usefulness), such a summation must be carried
out on anticipated future incomes. Following this course we are led into the
difficulty of forecasting these income prospects and of placing on them a
valuation that appropriately allows for their uncertainty. Although I do not
wish to assert that the complex theoretical problems associated with such
lifetime aggregates are insuperable, it is expedient to turn, with an eye on
Chapter 5 and practical matters, to income itself.

Income—defined as the increase in a person’s command over resources
during a given time period—may seem restricted in comparison with the
all-embracing nature of wealth or lifetime income. It has the obvious disad-
vantages that it relates only to an arbitrary time unit (such as one year) and
thus that it excludes the effect of past accumulations except in so far as these
are deployed in income-yielding assets. However, there are two principal
offsetting merits:

¢ if income includes unearned income, capital gains, and ‘income in kind’
as well as earnings, then it can be claimed as a fairly comprehensive
index of a person’s well-being at a given moment;

e information on personal income is generally more widely available and
more readily interpretable than for wealth or lifetime income.

Furthermore, note that none of the three concepts that have been dis-
cussed completely covers the command over resources for all goods and ser-
vices in society. Measures of personal wealth or income exclude ‘social wage’
elements such as the benefits received from communally enjoyed items like
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municipal parks, public libraries, the police, and ballistic missile systems, the
interpersonal distribution of which services may only be conjectured.

In view of the difficulty inherent in finding a global index of ‘well-
offness’, we may prefer to consider the narrow definition of the thing called
‘income’. Depending on the problem in hand, it can make sense to look
at inequality in the endowment of some other personal attribute, such as
consumption of a particular good, life expectancy, land ownership, etc.
This may be applied also to publicly owned assets or publicly consumed
commodities if we direct attention not to interpersonal distribution but to
intercommunity distribution—for example, the inequality in the distribution
of per capita energy consumption in different countries. The problems con-
cerning ‘income’ that I now discuss apply with equal force to the wider
interpretation considered in the earlier paragraphs.

It is evident from the foregoing that two key characteristics of the ‘income’
index are that it be measurable and that it be comparable among different
persons. That these two characteristics are mutually independent can be
demonstrated by two contrived examples. First, to show that an index might
be measurable but not comparable, take the case where well-being is mea-
sured by consumption per head within families, the family rather than the
individual being taken as the basic social unit. Suppose that consumption by
each family in the population is known but that the number of persons is
not. Then for each family, welfare is measurable up to an arbitrary change in
scale, in this sense: for family A doubling its income makes it twice as well-
off, trebling it makes it three times as well-off; the same holds for family
B; but A’s welfare scale and B’s welfare scale cannot be compared unless we
know the numbers in each family. Second, to show that an index may be
interpersonally comparable, but not measurable in the conventional sense,
take the case where ‘access to public services’ is used as an indicator of
welfare. Consider two public services, gas and electricity supply—households
may be connected to one or to both or to neither of them—and the following
scale (in descending order of amenity) is generally recognized:

* access to both gas and electricity;
* access to electricity only;
* access to gas only;

e access to neither.

We can compare households’ amenities—A and B are as well-off as each
other if they are both connected only to electricity—but it makes no sense
to say that A is twice as well-off if it is connected to gas as well as electricity.

It is possible to make some progress in the study of inequality with-
out measurability of the welfare index, and sometimes even without full

6
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comparability. For most of the time, however, I shall make both these
assumptions, which may be unwarranted. For this implies that when I write
the word ‘income’, I assume that it is so defined that adjustment has already
been made for non-comparability on account of differing needs, and that
fundamental differences in tastes (with regard to relative valuation of leisure
and monetary income, for example) may be ruled out of consideration. We
shall reconsider the problems of non-comparability in Chapter 5.

The final point in connection with the ‘income’ index that I shall mention
can be described as the ‘constant amount of cake’. We shall usually talk of
inequality freely as though there is some fixed total of goodies to be shared
among the population. This is definitionally true for certain quantities, such
as the distribution of acres of land (except perhaps in the Netherlands).
However, this is evidently questionable when talking about income as con-
ventionally defined in economics. If an arbitrary change is envisaged in
the distribution of income among persons, we may reasonably expect that
the size of the cake to be divided—national income—might change as a
result. Or, if we try to compare inequality in a particular country’s income
distribution at two points in time, it is quite likely that total income will
have changed during the interim. Moreover, if the size of the cake changes,
either autonomously or as a result of some redistributive action, this change
in itself may modify our view of the amount of inequality that there is in
society.

Having raised this important issue of the relationship between interper-
sonal distribution and the production of economic goods, I shall temporarily
evade it by assuming that a given whole is to be shared as a number of
equal or unequal parts. For some descriptions of inequality this assumption
is irrelevant. However, since the size of the cake as well as its distribution is
very important in social welfare theory, we shall consider the relationship
between inequality and total income in Chapter 3 (particularly page 48),
and examine the practical implications of a growing—or dwindling—cake in
Chapter S (see page 143.)

1.3 Inequality measurement, justice, and poverty

So what is meant by an inequality measure? In order to introduce this device
which serves as the third ‘ingredient’ mentioned previously, let us try a
simple definition which roughly summarizes the common usage of the term:

e a scalar numerical representation of the interpersonal differences in
income within a given population.

Now let us take this bland statement apart.
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Scalar Inequality

The use of the word ‘scalar’ implies that all the different features of inequality
are compressed into a single number—or a single point on a scale. Appealing
arguments can be produced against the contraction of information involved
in this aggregation procedure. Should we don this one-dimensional strait-
jacket when surely our brains are well-developed enough to cope with more
than one number at a time? There are three points in reply here.

First, if we want a multi-number representation of inequality, we can
easily arrange this by using a variety of indices each capturing a different
characteristic of the social state, and each possessing attractive properties as a
yardstick of inequality in its own right. We shall see some practical examples
(in Chapters 3 and 5) where we do exactly that.

Second, however, we often want to answer a question like ‘has inequality
increased or decreased?’” with a straight ‘yes’ or ‘no’. But if we make the
concept of inequality multi-dimensional we greatly increase the possibility
of coming up with ambiguous answers. For example, suppose we represent
inequality by two numbers, each describing a different aspect of inequality
of the same ‘income’ attribute. We may depict this as a point such as B in
Fig. 1.1, which reveals that there is an amount I; of type-1 inequality, and
I, of type-2 inequality. Obviously all points like C represent states of society
that are more unequal than B, and points such as A represent less unequal
states. But it is much harder to compare B and D or to compare B and E. If
we attempt to resolve this difficulty, we will find that we are effectively using
a single-number representation of inequality after all.

Third, multi-number representations of income distributions may well
have their place alongside a standard scalar inequality measure. As we shall

type-2 inequality

oA
°D

h
type-1 inequality

F1G. 1.1. Two types of inequality
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more inequality

less inequality

FI1G. 1.2. An inequality ranking

see in later chapters, even if a single agreed number scale (I; or I») is unavail-
able, or even if a collection of such scales (I; and I;) cannot be found, we
might be able to agree on an inequality ranking. This is a situation where—
although you may not be able to order or to sort the income distributions
uniquely (most equal at the bottom, most unequal at the top)—you never-
theless find that you can arrange them in a pattern that enables you to get
a fairly useful picture of what is going on. To get the idea, have a look at
Fig. 1.2. We might find that over a period of time the complex changes in
the relevant income distribution can be represented schematically as in the
league table illustrated there: you can say that inequality went down from
1980 to 1985, and went up from 1985 to either 1990 or 1992; but you cannot
say whether inequality went up or down in the early nineties. Although this
method of looking at inequality is not decisive in terms of every possible
comparison of distributions, it could still provide valuable information.

Numerical Representation

What interpretation should be placed on the phrase ‘numerical representa-
tion’ in the definition of an inequality measure? The answer to this depends
on whether we are interested in just the ordering properties of an inequality
measure or in the actual size of the index and of changes in the index.

To see this, look at the following example. Imagine four different social
states A, B, C, D, and four rival inequality measures Iy, I, I3, I4. The first
column in Table 1.1 gives the values of the first measure, I;, realized in
each of the four situations. Are any of the other candidates equivalent to
I,? Notice that I3 has a strong claim in this regard. Not only does it rank
A,B,C,D in the same order, it also shows that the percentage change in
inequality in going from one state to another is the same as if we use the
I; scale. If this is true for all social states, we will call I; and I3 cardinally

9



Measuring Inequality

Table 1.1. Four inequality scales

A .10 13 .24 12
B .25 .26 60 16
C .30 34 .72 20
D 40 10 .96 22

equivalent. More formally, I; and I3 are cardinally equivalent if one scale
can be obtained from the other, multiplying by a positive constant and
adding or subtracting another constant. In the above case, we multiply I;
by 2.4 and add on zero to get I3. Now consider I4: it ranks the four states
A to D in the same order as [;, but it does not give the same percentage
differences (compare the gaps between A and B and between B and C). So
I, and I4 are certainly not cardinally equivalent. However, if it is true that
I, and 14 always rank any set of social states in the same order, we will say
that the two scales are ordinally equivalent.! Obviously cardinal equivalence
entails ordinal equivalence, but not vice versa. Finally we note that I, is not
ordinally equivalent to the others, although for all we know it may be a
perfectly sensible inequality measure.

Now let A be the year 1970, let B be 1960, and D be 1950. Given the
question, ‘Was inequality less in 1970 than it was in 1960?’, I; produces the
same answer as any other ordinally equivalent measure (such as I3 or Iy):
‘numerical representation’ simply means a ranking. But, given the question,
‘Did inequality fall more in the 1960s than it did in the 1950s?’, I; only
yields the same answer as other cardinally equivalent measures (I3 alone):
here inequality needs to have the same kind of ‘numerical representation’ as
temperature on a thermometer.

Income Differences

Should any and every ‘income difference’ be reflected in a measure of
inequality? The commonsense answer is ‘No’, for two basic reasons: need
and merit. The first reason is the more obvious: large families and the sick
need more resources than the single, healthy person to support a particular
economic standard. Hence in a ‘just’ allocation, we would expect those
with such greater needs to have a higher income than other people; such
income differences would thus be based on a principle of justice, and should

I A mathematical note: I; and I, are ordinally equivalent if one may be written as a monoton-
ically increasing function of the other, say I; = f(I3), where dI;/dl; > 0. An example of such
a function is log(I). I and I3 are cardinally equivalent if f takes the following special form:
I1 = a+bl3, where b is a positive number.

10
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not be treated as inequalities. To cope with this difficulty one may adjust
the income concept such that allowance is made for diversity of need, as
mentioned in the last section; this is something which needs to be done
with some care—as we will find in Chapter 5 (see the discussion on page
110).

The case for ignoring differences on account of merit depends on the inter-
pretation attached to ‘equality’. One obviously rough-and-ready description
of a just allocation requires equal incomes for all irrespective of personal
differences other than need. However, one may argue strongly that in a just
allocation higher incomes should be received by doctors, heroes, inventors,
Stakhanovites, and other deserving persons. Unfortunately, in practice it is
more difficult to make adjustments similar to those suggested in the case of
need and, more generally, even distinguishing between income differences
that do represent genuine inequalities and those that do not poses a serious
problem.

Given Population

The last point about the definition of an inequality measure concerns the
phrase ‘given population’ and needs to be clarified in two ways. First, when
examining the population over say a number of years, what shall we do
about the effect on measured inequality of persons who either enter or
leave the population, or whose status changes in some other relevant way?
The usual assumption is that as long as the overall structure of income
differences stays the same (regardless of whether different personnel are now
receiving those incomes), measured inequality remains unaltered. Hence
the phenomenon of social mobility within or in-and-out of the population
eludes the conventional method of measuring inequality, although some
might argue that it is connected with inequality of opportunity.? Secondly,
one is not exclusively concerned with inequality in the population as a
whole. It is useful to be able to decompose this ‘laterally’ into inequality
within constituent groups, differentiated regionally or demographically per-
haps, and inequality between these constituent groups. Indeed, once one
acknowledges basic heterogeneities within the population, such as age or
sex, awkward problems of aggregation may arise, although we shall ignore
them. It may also be useful to decompose inequality ‘vertically’ so that one
looks at inequality within a subgroup of the rich or of the poor, for example.
Hence the specification of the given population is by no means a trivial
prerequisite to the application of inequality measurement.

2 Check Question 6 at the end of the chapter to see if you concur with this view.

11
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Although the definition has made it clear that an inequality measure
calls for a numerical scale, I have not suggested how this scale should be
calibrated. Specific proposals for this will occupy Chapters 2 and 3, but a
couple of basic points may be made here.

You may have noticed just now that the notion of justice was slipped
in while income differences were being considered. In most applications of
inequality analysis social justice really ought to be centre stage. That more
just societies should register lower numbers on the inequality scale evidently
accords with an intuitive appreciation of the term ‘inequality’. But, on what
basis should principles of distributional justice and concern for inequality
be based? Economic philosophers have offered a variety of answers. This
concern could be no more than the concern about the everyday risks of life:
just as individuals are upset by the financial consequences of having their car
stolen or missing their plane, so too they would care about the hypothetical
risk of drawing a losing ticket in a lottery of life chances; this lottery could
be represented by the income distribution in the UK, the USA, or wherever;
nice utilitarian calculations on the balance of small-scale gains and losses
become utilitarian calculations about life chances; aversion to risk translates
into aversion to inequality. Or the concern could be based upon the altruistic
feelings of each human towards his fellows that motivates charitable action.
Or again it could be that there is a social imperative toward concern for the
least advantaged—and perhaps concern about the inordinately rich—that
transcends the personal twinges of altruism and envy. It could be simple
concern about the possibility of social unrest. It is possible to construct a
coherent justice-based theory of inequality measurement on each of these
notions, although that takes us beyond the remit of this book.

However, if we can clearly specify what a just distribution is, such a state
provides the zero from which we start our inequality measure. But even a
well-defined principle of distributive justice is not sufficient to enable one
to mark off an inequality scale unambiguously when considering diverse
unequal social states. Each of the apparently contradictory scales I; and
I, considered in Fig. 1.1 and Table 1.1 might be solidly founded on the
same principle of justice, unless such a principle were extremely narrowly
defined.

The other general point is that we might suppose there is a close link
between an indicator of the extent of poverty and the calibration of a mea-
sure of economic inequality. This is not necessarily so, because two rather
different problems are generally involved. In the case of the measurement
of poverty, one is concerned primarily with that segment of the population
falling below some specified ‘poverty line’; to obtain the poverty measure
one may perform a simple head count of this segment, or calculate the gap

12



First Principles

between the average income of the poor and the average income of the
general population, or carry out some other computation on poor people’s
incomes in relation to each other and to the rest of the population. Now, in
the case of inequality one generally wishes to capture the effects of income
differences over a much wider range. Hence it is perfectly possible for the
measured extent of poverty to be declining over time, while at the same
time and in the same society measured inequality increases due to changes
in income differences within the non-poor segment of the population, or
because of migrations between the two groups. (If you are in doubt about
this you might like to have a look at Question 5 on page 14.) Poverty will
make a few guest appearances in the course of this book, but on the whole
our discussion of inequality has to take a slightly different track from the
measurement of poverty.

1.4 Inequality and the social structure

Finally we return to the subject of the first ingredient, namely the basic social
units used in studying inequality—or the elementary particles of which we
imagine society to be constituted. The definition of the social unit, whether
it be a single person, a nuclear family, or an extended family depends intrin-
sically upon the social context, and upon the interpretation of inequality
that we impose. Although it may seem natural to adopt an individualistic
approach, some other ‘collective’ unit may be more appropriate.

When economic inequality is our particular concern, the theory of the
development of the distribution of income or wealth may itself influence
the choice of the basic social unit. To illustrate this, consider the classical
view of an economic system, the population being subdivided into distinct
classes of workers, capitalists, and landowners. Each class is characterized by
a particular function in the economic order and by an associated type of
income—wages, profits, and rents. If, further, each is regarded as internally
fairly homogeneous, then it makes sense to pursue the analysis of inequality
in class terms rather than in terms of individual units.

However, so simple a model is unsuited to describing inequality in a
significantly heterogeneous society, despite the potential usefulness of class
analysis for other social problems. A superficial survey of the world around
us reveals rich and poor workers, failed and successful capitalists, and several
people whose rdles and incomes do not fit into neat slots. Hence the focus
of attention in this book is principally upon individuals rather than types,
whether the analysis is interpreted in terms of economic inequality or some
other sense.

13
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Thus reduced to its essentials it might appear that we are dealing with a
purely formal problem, which sounds rather dull. This is not so. Although
the subject matter of this book is largely technique, the techniques involved
are essential for coping with the analysis of many social and economic
problems in a systematic fashion; and these problems are far from dull or
uninteresting.

1.5 Questions

1.

14

In Syldavia the economists find that (annual) household consumption
c is related to (annual) income y by the formula

c=a+py,

where a > 0 and 0 < B < 1. Because of this, they argue, inequality of
consumption must be less than inequality of income. Provide an intu-
itive argument for this.

. Ruritanian society consists of three groups of people: Artists, Bureau-

crats and Chocolatiers. Each Artist has high income (15,000 Ruritanian
Marks) with a 50 per cent probability, and low income (5000 RM) with
50 per cent probability. Each Bureaucrat starts working life on a salary
of 5000 RM and then benefits from an annual increment of 250 RM
over the 40 years of his (perfectly safe) career. Chocolatiers get a straight
annual wage of 10,000 RM. Discuss the extent of inequality in Ruritania
according to annual income and lifetime income concepts.

. In Borduria the government statistical service uses an inequality index

that in principle can take any value greater than or equal to 0. You want
to introduce a transformed inequality index that is ordinally equivalent
to the original but that will always lie between zero and 1. Which of the

following will do?
I [ 1 I
I.
I+1’ I+1’I—1’f

. Methods for analysing inequality of income could be applied to inequal-

ity of use of specific health services (Williams and Doessel 2006). What
would be the principal problems of trying to apply these methods to
inequality of health status?

. After a detailed study of a small village, government experts reckon

that the poverty line is 100 rupees a month. In January a joint team
from the Ministry of Food and the Central Statistical Office carry out
a survey of living standards in the village: the income for each villager
(in rupees per month) is recorded. In April the survey team repeats the
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(a

exercise. The number of villagers was exactly the same as in January,
and villagers’ incomes had changed only slightly. An extract from the
results is as follows:

January April

92 92

95 92
98 101
104 104

(the dots indicate the incomes of all the other villagers for whom
income did not change at all from January to April). The Ministry of
Food writes a report claiming that poverty has fallen in the village;
the Central Statistical Office writes a report claiming that inequality
has risen in the village. Can they both be right? (See Thon 1979, 1981,
1983b for more on this.)

6. In Fantasia there is a debate about educational policy. The current
situation is that there are two equal-sized groups of people, the Dark-
greys who all get an income of $200, and the Light-greys who all get
an income of $600, as in the top part of the accompanying diagram,
labelled ‘Parents’. One group of educational experts argue that if the
Fantasian government adopts policy A then the future outcome for the
next generation will be as shown on the left side of the diagram, labelled

®)

1 $ ! $
200 400 600 800 1,000 1,200 1,400 0 200 400 600 800 1,000 1,200 1,400

U U

$
200 400 600 800 1,000 1,200 1,400 0 200 400 600 800 1,000 1,200 1,400

F1G. 1.3. Alternative policies for Fantasia
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16

‘Children’; another group of experts argue that if policy B is adopted,

the outcome for the next generation will be that on the right side of the

diagram (shading shows are used to show whether the children come

from Dark-grey families or Light-grey families). According to your view:

e Which of policies A and B would produce lower inequality of out-
come?

e Which policy produces higher social mobility?

* Which policy is characterized by lower inequality of opportunity?



2

Charting Inequality

E. Scott Fitzgerald: ‘The rich are different from us.’

Ernest Hemingway: ‘Yes, they have more money.’

If society really did consist of two or three fairly homogeneous groups,
economists and others could be saved a lot of trouble. We could then simply
look at the division of income between landlords and peasants, among work-
ers, capitalists, and rentiers, or any other appropriate sections. Naturally we
would still be faced with such fundamental issues as how much each group
should possess or receive, whether the statistics are reliable, and so on, but
questions such as ‘what is the income distribution?’ could be satisfactorily
met with a snappy answer ‘65 per cent to wages, 35 per cent to profits’. Of
course matters are not that simple. As we have argued, we want a way of
looking at inequality that reflects both the depth of poverty of the ‘have
nots’ of society and the height of well-being of the ‘haves’: it is not easy to
do this just by looking at the income accruing to, or the wealth possessed
by, two or three groups.

So in this chapter we will look at several quite well-known ways of pre-
senting inequality in a large heterogeneous group of people. They are all
methods of appraising the sometimes quite complicated information that is
contained in an income distribution, and they can be grouped under three
broad headings: diagrams, inequality measures, and rankings. To make the
exposition easier I shall continue to refer to ‘income distribution’, but you
should bear in mind, of course, that the principles can be carried over to the
distribution of any other variable that you can measure and that you think
is of economic interest.

17
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2.1 Diagrams

Putting information about income distribution into diagrammatic form is
a particularly instructive way of representing some of the basic ideas about
inequality. There are several useful ways of representing inequality in pic-
tures; the four that I shall discuss are introduced in the accompanying box.
Let us have a closer look at each of them.

Parade of Dwarfs
Frequency distribution
Lorenz curve

Log transformation

PICTURES OF INEQUALITY

Jan Pen’s Parade of Dwarfs is one of the most persuasive and attractive
visual aids in the subject of income distribution. Suppose that everyone in
the population had a height proportional to his or her income, with the
person on average income being endowed with average height. Line people
up in order of height and let them march past in some given time interval—
let us say one hour. Then the sight that would meet our eyes is represented by
the curve in Fig. 2.1.! The whole parade passes in the interval represented by
OC. But we do not meet the person with average income until we get to the
point B (when well over half the parade has gone by). Divide total income by
total population: this gives average or mean income (y) and is represented by
the height OA. We have oversimplified Pen’s original diagram by excluding
from consideration people with negative reported incomes, which would
involve the curve crossing the base line towards its left-hand end. And, in
order to keep the diagram on the page, we have plotted the last point of the
curve (D) in a position that would be far too low in practice.

This diagram highlights the presence of any extremely large incomes and,
to a certain extent, abnormally small incomes. But we may have reservations
about the degree of detail that it seems to impart concerning middle income
receivers. We shall see this point recur when we use this diagram to derive
an inequality measure that informs us about changes in the distribution.

Frequency distributions are well-tried tools of statisticians, and are discussed
here mainly for the sake of completeness and as an introduction for those
unfamiliar with the concept—for a fuller account see the references cited in

! Those with especially sharp eyes will see that the source is more than 20 years old. There is a
good reason for using these data—see the notes on page 180.
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FIG. 2.1. The Parade of Dwarfs UK income before tax, 1984/5
Source: Economic Trends, November 1987

the notes to this chapter. An example is found in Fig. 2.2. Suppose you were
looking down on a field. On one side, the axis Oy, there is a long straight
fence marked off by income categories: the physical distance between any
two points along the fence directly corresponds to the income differences
they represent. Then, get the whole population to come into the field and
line up in the strip of land marked off by the piece of fence corresponding
to their income bracket. So the £10,000-to-£12,500-a-year persons stand on
the shaded patch. The shape that you get will resemble the stepped line in
Fig. 2.2—called a histogram—which represents the frequency distribution. It
may be that we regard this as an empirical observation of a theoretical curve
which describes the income distribution, for example the smooth curve
drawn in Fig. 2.2. The relationship f(y) charted by this curve is sometimes
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FI1G. 2.2. Frequency distribution of income
Source: as for Fig. 2.1

known as a density function where the scale is chosen such that the area under
the curve and above the line Oy is standardized at unity.

The frequency distribution shows the middle income ranges more clearly.
But perhaps it is not so readily apparent what is going on in the upper tail;
indeed, in order to draw the figure, we have deliberately made the length
of the fence much too short. (On the scale of this diagram it ought to be
100 metres at least!) This diagram and the Parade of Dwarfs are, however,
intimately related; and we show this by constructing Fig. 2.3 from Fig. 2.2.
The horizontal scale of each figure is identical. On the vertical scale of Fig.
2.3 we plot ‘cumulative frequency’ written F (y), which is proportional to the
area under the curve and to the left of y in Fig. 2.2. If you experiment with
the diagram you will see that as you increase y, F (y) usually goes up (it can
never decrease)—from a value of zero when you start at the lowest income
received, up to a value of one for the highest income. Thus, supposing we
consider y = £30, 000, we plot a point in Fig. 2.3 that corresponds to the
proportion of the population with £30, 000 or less. And we can repeat this
operation for every point on either the empirical curve or on the smooth
theoretical curve.

The visual relationship between Figs 2.1 and 2.3 is now obvious. As a
further point of reference, the position of mean income has been drawn
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F1G. 2.3. Cumulative frequency distribution
Source: as for Fig. 2.1

in at the point A in the two figures. (If you still don't see it, try turning the
page round!)

The Lorenz curve was introduced in 1905 as a powerful method of illustrat-
ing the inequality of wealth distribution. A simplified explanation of it runs
as follows.

Once again, line up everybody in ascending order of incomes and let them
parade by. Measure F (), the proportion of people who have passed by, along
the horizontal axis of Fig. 2.4. Once point C is reached everyone has gone by,
so F(y) = 1. Now as each person passes, hand him his share of the ‘cake’—
that is, the proportion of total income that he receives. When the parade
reaches people with income y, let us suppose that a proportion ®(y) of the
cake has gone. So of course when F(y) =0, ®(y) is also O (no cake gone);
and when F(y) =1, ®(y) is also 1 (all the cake has been handed out). ®(y) is
measured on the vertical scale in Fig. 2.4, and the graph of ® plotted against
F is the Lorenz curve. Note that it is always convex toward the point C, the
reason for which is easy to see. Suppose that the first 10 per cent have filed by
(F(y1) = 0.1) and you have handed out 4 per cent of the cake (®(y1) = 0.04);
then by the time the next 10 per cent of the people go by (F (y2) = 0.2), you
must have handed out at least 8 per cent of the cake (®(y,) = 0.08). Why?
Because we arranged the parade in ascending order of cake-receivers. Notice
too that if the Lorenz curve lay along OD we would have a state of perfect
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FI1G. 2.4. Lorenz curve of income
Source: as for Fig. 2.1

equality, for along that line the first 5 per cent get 5 per cent of the cake, the
first 10 per cent get 10 per cent...and so on.

The Lorenz curve incorporates some principles that are generally regarded
as fundamental to the theory of inequality measurement, as we will see later
in this chapter (page 34) and also in Chapter 3 (pages 46 and 62). And again
there is a nice relationship with Fig. 2.1. If we plot the slope of the Lorenz
curve against the cumulative population proportions, F, then we are back
precisely to the Parade of Dwarfs (scaled so that mean income equals unity).
Once again, to facilitate comparison, the position where we meet the person
with mean income has been marked as point B, although in the Lorenz
diagram we cannot represent mean income itself. Note that the mean occurs
at a value of F such that the slope of the Lorenz curve is parallel to OD.

Logarithmic transformation. An irritating problem that arises in drawing the
frequency curve of Fig. 2.2 is that we must either ignore some of the very
large incomes in order to fit the diagram on the page, or put up with a
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diagram that obscures much of the detail in the middle and lower income
ranges. We can avoid this to some extent by drawing a similar frequency
distribution, but plotting the horizontal axis on a logarithmic scale as in
Fig. 2.5. Equal distances along the horizontal axis correspond to equal pro-
portionate income differences.

Again the point corresponding to mean income, y, has been marked in
as A. Note that the length OA equals log(y) and is not the mean of the
logarithms of income. This is marked in as the point A’, so that the length
OA’ = log(y*) where y* is the geometric mean of the distribution. Assuming
incomes are non-negative, the geometric mean, found by taking the mean
of the logarithms and then transforming back to natural numbers, can never
exceed the conventional arithmetic mean.

We have now seen four different ways of presenting pictorially the same
facts about income distribution. Evidently each graphical technique may
emphasize quite different features of the distribution: the Parade draws
attention to the enormous height of the well-off; the frequency curve
presents middle incomes more clearly, the logarithmic transformation cap-
tures information from each of the ‘tails’ as well as the middle, but at the
same time sacrifices simplicity and ease of interpretation. This difference
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Source: as for Figure 2.1
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in emphasis is partly reflected in the inequality measures derived from the
diagrams.

2.2 Inequality measures

We can use Figs 2.1 to 2.5 in order to introduce and illustrate some con-
ventional inequality measures. A few of the more important ones that we
shall encounter are listed in the accompanying box. Of course, an inequality
measure, like any other tool, is to be judged by the kind of job that it does: is
it suitably sensitive to changes in the pattern of distribution? Does it respond
appropriately to changes in the overall scale of incomes? As we go through
the items in the box we will briefly consider their principal properties: (a
proper job must wait until page 67, after we have considered the important
analytical points introduced in Chapter 3).

Range R

Relative mean deviation M
Variance V

Coefficient of variation c
Gini coefficient G

Log variance v

INEQUALITY MEASURES

The Parade of Dwarfs suggests the first two of these. First, we have the
range, which we define simply as the distance CD in Fig. 2.1 or:

R= Ymax — Ymin.

where ymax and ymin are, respectively, the maximum and minimum values
of income in the parade (we may, of course, standardize by considering
R/Ymin or R/y). Plato apparently had this concept in mind when he made
the following judgement:

We maintain that if a state is to avoid the greatest plague of all—I mean civil war,
though civil disintegration would be a better term—extreme poverty and wealth
must not be allowed to arise in any section of the citizen-body, because both
lead to both these disasters. That is why the legislator must now announce the
acceptable limits of wealth and poverty. The lower limit of poverty must be the
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value of the holding. The legislator will use the holding as his unit of measure
and allow a man to possess twice, thrice, and up to four times its value.

The Laws, 745.

The problems with the range are evident. Although it might be satisfactory
in a small closed society where everyone’s income is known fairly certainly,
it is clearly unsuited to large, heterogeneous societies where the ‘minimum’
and ‘maximum’ incomes can at best only be guessed. The measure will be
highly sensitive to the guesses or estimates of these two extreme values. In
practice one might try to get around the problem by using a related concept
that is more robust: take the gap between the income of the person who
appears exactly at, say, the end of the first three minutes in the Parade, and
that of the person exactly at the 57th minute (the bottom 5 per cent and
the top 5 per cent of the line of people) or the income gap between the
people at the 6th and 54th minute (the bottom 10 per cent and the top
10 per cent of the line of people). However, even if we did that there is a more
compelling reason for having doubts about the usefulness of R. Suppose we
can wave a wand and bring about a society where the person at position O
and the person at position C are left at the same height, but where everyone
else in between was levelled to some equal, intermediate height. We would
probably agree that inequality had been reduced, though not eliminated.
But according to R it is just the same!

You might be wondering whether the problem with R arises because it
ignores much of the information about the distribution (it focuses just on a
couple of extreme incomes). Unfortunately we shall find a similar criticism
in subtle form attached to the second inequality measure that we can read
off the Parade diagram, one that uses explicitly the income values of all
the individuals. This is the relative mean deviation, which is defined as the
average absolute distance of everyone’s income from the mean, expressed as
a proportion of the mean. Take a look at the shaded portions in Fig. 2.1.
These portions, which are necessarily of equal size, constitute the area
between the Parade curve itself and the horizontal line representing mean
income. In some sense, the larger this area, the greater is inequality. (Try
drawing the Parade with more giants and more dwarfs.) It is conventional to
standardize the inequality measure in unit-free terms, so let us divide by the
total income (which equals area OCGA). In terms of the diagram the relative
mean deviation is then:?

Mo area OAQ + area QGD
- area OCGA

2 You are invited to check the technical appendix (p. 153) for formal definitions of this and
other inequality measures.

25



Measuring Inequality

y D
A Q - G
(0] B C

FI1G. 2.6. The Parade with partial equalization

But now for the fatal weakness of M. Suppose you think that the stature of
the dwarfs to the left of B is socially unacceptable. You arrange a reallocation
of income so that everyone with incomes below the mean (to the left of
point B) has exactly the same income. The modified parade then looks
like Fig. 2.6. But notice that the two shaded regions in Fig. 2.6 are exactly
the same area as in Fig. 2.1: so the value of M has not changed. Whatever
reallocation you arrange among people to the left of B only, or among people
to the right of B only, inequality according to the relative mean deviation
stays the same.

The relative mean deviation can be easily derived from the Lorenz curve
(Fig. 2.4). From the Technical Appendix, page 156, it can be verified that
M =2[F(y) — ®()], that is: M = 2[OB — BP]. However, a more common use
of the Lorenz curve diagram is to derive the Gini coefficient, G, expressed as
the ratio of the shaded area in Fig. 2.4 to the area OCD. There is a variety
of equivalent ways of defining G; but perhaps the easiest definition is as the
average difference between all possible pairs of incomes in the population,
expressed as a proportion of total income: see pages 155 and 156 for a formal
definition. The main disadvantage of G is that it places a rather curious
implicit relative value on changes that may occur in different parts of the
distribution. An income transfer from a relatively rich person to a person
with £x less has a much greater effect on G if the two persons are near the
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middle rather than at either end of the parade.® So, consider transferring
£1 from a person with £10,100 to a person with £10,000. This has a much
greater effect on reducing G than transferring £1 from a person with £1,100
to one with £1,000 or than transferring £1 from a person with £100,100 to a
person with £100,000. This valuation may be desirable, but it is not obvious
that it is desirable: this point about the valuation of transfers is discussed
more fully in Chapter 3 once we have discussed social welfare explicitly.

Other inequality measures can be derived from the Lorenz curve in Fig. 2.4.
Two have been suggested in connection with the problem of measuring
inequality in the distribution of power, as reflected in voting strength. First,
consider the income level y, at which half the national cake has been
distributed to the parade; that is, ®(yp) = % Then define the minimal majority
inequality measure as F ()y), which is the distance OH. If & is reinterpreted
as the proportion of seats in an elected assembly where the votes are spread
unevenly among the constituencies, as reflected by the Lorenz curve, and if
F is reinterpreted as a proportion of the electorate, then 1 — F () represents
the smallest proportion of the electorate that can secure a majority in the
elected assembly. Second, we have the equal shares coefficient, defined as F (j):
the proportion of the population that has income j or less (the distance OB),
or the proportion of the population that has ‘average voting strength’ or less.
Clearly, either of these measures as applied to the distribution of income
or wealth is subject to essentially the same criticism as the relative mean
deviation: they are insensitive to transfers among members of the Parade
on the same side of the person with income y; (in the case of the minimal
majority measure) or j (the equal shares coefficient): in effect they measure
changes in inequality by only recording transfers between two broadly based
groups.

Now let us consider Figs 2.2 and 2.5: the frequency distribution and its
log-transformation. An obvious suggestion is to measure inequality in the
same way as statisticians measure dispersion of any frequency distribution.
In this application, the usual method would involve measuring the distance
between the individual’s income y; and mean income y, squaring this, and
then finding the average of the resulting quantity in the whole population.
Assuming that there are n people we define the variance:

3 To see why, check the definition of G on page 155 and note the formula for the ‘Transfer
Effect’ (right-hand column). Now imagine persons i and j located at two points y; and y;, a
given distance x apart, along the fence described on page 19; if there are lots of other persons in
the part of the field between those two points then the transfer-effect formula tells us that the
impact of a transfer from i to j will be large (F (y;) — F (1) is a large number) and vice versa.
It so happens that real-world frequency distributions of income look like that in Fig. 2.2 (with
a peak in the mid-income range rather than at either end), so that two income receivers, £100
apart, have many people between them if they are located in the mid-income range, but rather
few people between them if located at one end or other.
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V=Sl 2.1)

However, V is unsatisfactory in that were we simply to double everyone's
incomes (and thereby double mean income and leave the shape of the
distribution essentially unchanged), V would quadruple. One way round this
problem is to standardize V. Define the coefficient of variation thus

YV 2.2)

Y

Another way to avoid this problem is to look at the variance in terms of
the logarithms of income—to apply the transformation illustrated in Fig. 2.5
before evaluating the inequality measure. In fact there are two important

definitions:
~ 1 n yi 2
v=- > [log <;)] , (2.3)

i=1

1 & Vi 2
= Z [log (F)] . (2.4)
i=1

The first of these we will call the logarithmic variance, and the second we
may more properly term the variance of the logarithms of incomes. Note that
v is defined relative to the logarithm of mean income; v, is defined relative
to the mean of the logarithm of income. Either definition is invariant under
proportional increases in all incomes.

We shall find that vy has much to recommend it when we come to examine
the lognormal distribution in Chapter 4. However, ¢, v, and v; can be criti-
cized more generally on grounds similar to those on which G was criticized.
Consider a transfer of £1 from a person with y to a person with y — £100.
How does this transfer affect these inequality measures? In the case of ¢, it
does not matter in the slightest where in the parade this transfer is effected:
so whether the transfer is from a person with £500 to a person with £400, or
from a person with £100,100 to a person with £100,000, the reduction in ¢
is exactly the same. Thus ¢ will be particularly good at capturing inequality
among high incomes, but may be of more limited use in reflecting inequality
elsewhere in the distribution. In contrast to this property of ¢, there appears
to be good reason to suggest that a measure of inequality has the property
that a transfer of the above type carried out in the low income brackets
would be quantitatively more effective in reducing inequality than if the
transfer were carried out in the high income brackets. The measures v and v,
appear to go some way towards meeting this objection. Taking the example
of the UK in 1984/5 (illustrated in Figs 2.1 to 2.5 where we have y = £7,522),
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a transfer of £1 from a person with £10,100 to a person with £10,000 reduces
v and v; less than a transfer of £1 from a person with £500 to a person with
£400. But, unfortunately, v and v; ‘overdo’ this effect, so to speak. For if we
consider a transfer from a person with £100,100 to a person with £100,000
then inequality, as measured by v or vy, increases! This is hardly a desirable
property for an inequality measure to possess, even if it does occur only at
high incomes.*

Other statistical properties of the frequency distribution may be pressed
into service as inequality indices. While these may draw attention to partic-
ular aspects of inequality—such as dispersion among the very high or very
low incomes, by and large they miss the point as far as general inequality
of incomes is concerned. Consider, for example, measures of skewness. For
symmetric distributions (such as the Normal distribution, pictured on page
81) these measures are zero; but this zero value of the measure may be
consistent with either a very high or a very low dispersion of incomes (as
measured by the coefficient of variation). This does not appear to capture
the essential ideas of inequality measurement.

Figure 2.2 can be used to derive an inequality measure from quite a
different source. Stark (1972) argued that an appropriate practical method of
measuring inequality should be based on society’s revealed judgements on
the definition of poverty and riches. The method is best seen by redrawing
Fig. 2.2 as Fig. 2.7. Stark’s study concentrated specifically on UK incomes, but
the idea it embodies seems intuitively very appealing and could be applied
more generally. The distance OP in Fig. 2.7 we will call the range of ‘low
incomes’: P could have been fixed with reference to the income level at
which a person becomes entitled to income support, adjusted for need, or
with reference to some proportion of average income®—this is very similar
to the specification of a ‘poverty line’. The point R could be determined by
the level at which one becomes liable to any special taxation levied on the
rich, again adjusted for need.® The high-low index is then total shaded area
between the curve and the horizontal axis.

The high-low index seems imaginative and practical, but it suffers from
three important weaknesses. First, it is subject to exactly the same type of
criticism that we levelled against M, and against the ‘minimal majority’ and
‘equal share’ measures: the measure is completely insensitive to transfers
among the ‘poor’ (to the left of P), among the ‘rich’ (to the right of R), or

4 You will always get this trouble if the ‘poorer’ of the two persons has at least 2.72 times mean
income, in this case £20, 447—see the Technical Appendix, page 164.

5 In Fig. 2.7 it has been located at half median income—check Question 1 on page 37 if you
are unsure about how to define the median.

6 Note that in a practical application the positions of both P and R depend on family com-
position. This however is a point which we are deferring until later. Figure 2.7 illustrates one
type.
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F1G. 2.7. The high-low approach

among the ‘middle income receivers’. Second, there is an awkward dilemma
concerning the behaviour of points P and R over time. Suppose one leaves
them fixed in relative terms, so that OP and OR increase only at the same
rate as mean or median income increases over time. Then one faces the
criticism that one’s current criterion for measuring inequality is based on
an arbitrary standard fixed, perhaps, a quarter of a century ago. On the
other hand, suppose that OP and OR increase with year-to-year increases in
some independent reference income levels (the ‘income-support’ threshold
for point P and the ‘higher-rate tax’ threshold for point R): then, if the
inequality measure shows a rising trend because of more people falling in the
‘low income’ category, one must face the criticism that this is just an optical
illusion created by altering, for example, the definition of ‘poor’ people;
some compromise between the two courses must be chosen and the results
derived for a particular application treated with caution.” Third, there is the
point that in practice the contribution of the shaded area in the upper tail to

7 There is a further complication in the specific UK application considered by Stark. He fixed
point P using the basic national assistance (later supplementary benefit) scale plus a percentage
to allow for underestimation of income and income disregarded in applying for assistance
(benefit); point R was fixed by the point at which one became liable for surtax. However, national
assistance, supplementary benefit, and surtax are no more. Other politically or socially defined P
and R points could be determined for other times and other countries; but the basic problem of
comparisons over time that I have highlighted would remain. So too, of course, would problems
of comparisons between countries.
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the inequality measure would be negligible: the behaviour of the inequality
measure would be driven by what happens in the lower tail—which may or
may not be an acceptable feature—and would simplify effectively to whether
people ‘fall in’ on the right or on the left of point P when we arrange them in
the frequency distribution diagram (Figs 2.2 and 2.7). In effect the high-low
inequality index would become a slightly modified poverty index.

The use of any one of the measures we have discussed in this section
implies certain value judgements concerning the way we compare one per-
son’s income against that of another. The detail of such judgements will be
explained in the next chapter, although we have already seen a glimpse of
some of the issues.

2.3 Rankings

Finally, we consider ways of looking at inequality that may lead to ambigu-
ous results. Let me say straight away that this sort of non-decisive approach
is not necessarily a bad thing. As we noted in Chapter 1 it may be helpful to
know that over a particular period events have altered the income distribu-
tion in such a way that we find offsetting effects on the amount of inequality.
The inequality measures that we have examined in the previous section act
as ‘tie-breakers’ in such an event. Each inequality measure resolves the ambi-
guity in its own particular way. Just how we should resolve these ambiguities
is taken up in more detail in Chapter 3.

Quantiles

Shares

TYPES OF RANKING

The two types of ranking on which we are going to focus are highlighted
in the accompanying box. To anticipate the discussion a little I should point
out that these two concepts are not really new to this chapter, because they
each have a simple interpretation in terms of the pictures that we were
looking at earlier. In fact I could have labelled the items in the box as Parade
rankings and Lorenz rankings.

We have already encountered quantiles when we were discussing the
incomes of the 3rd and 57th minute people as an alternative to the range,
R (page 25). Quantiles are best interpreted using either the Parade diagram
or its equivalent, the cumulative frequency distribution (Fig. 2.3). Take the
Parade diagram and reproduce it in Fig. 2.8 (the parade of Fig. 2.1 is the solid
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FI1G. 2.8. The Parade and the quantile ranking

curve labelled 1984/5; we will come to the other two curves in a moment).
Mark the point 0.2 on the horizontal axis, and read off the corresponding
income on the vertical axis: this gives the 20 per cent quantile (usually known
as the first quintile just to confuse you): the income at the right-hand end of
the first fiftth (12 minutes) of the Parade of Dwarfs. Figure 2.8 also shows
how we can do the same for the 80 per cent quantile (the top quintile). In
general we specify a p-quantile—which [ will write Q,—as follows. Form the
Parade of Dwarfs and take the leading proportion p of the Parade (where of
course 0 < p < 1), then Q, is the particular income level which demarcates
the right-hand end of this section of the Parade.®

8 A note on ‘iles’. The generic term is ‘quantile’—which applies to any specified population
proportion p—but a number of special names for particular convenient cases are in use. There is
the median Qqs, and a few standard sets such as three quartiles (Qo.2s, Qos, Qo.7s), four quintiles
(Qo.z2, Qo.4, Qos. Qo) or nine deciles (Qo.1, Qo.2, Qo3. Qoa, Qos. Qos, Qo7 Qos, Qoo); of course
you can specify as many other ‘standard’ sets of quantiles as your patience and your knowledge
of Latin prefixes permits.

I have avoided using the term ‘quantile group’, that is sometimes found in the literature, which
refers to a slice of the population demarcated by two quantiles. For example the slice of the
population with incomes at least as great as Qo1 but less than Qo could be referred to as the
‘second decile group’. I have avoided the term because it could be confusing. However, you may
also find references to such a slice of the population as ‘the second decile’: this usage is not just
confusing, it is wrong; the quantiles are the points on the income scale, not the slices of the
population that may be located between the points.
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FI1G. 2.9. Quantile ratios of earnings of adult men, UK 1968-2007
Source: Annual Survey of Hours and Earnings

How might we use a set of quantiles to compare income distributions?
We could produce something like Fig. 2.9, which shows the proportionate
movements of the quantiles of the frequency distribution of earnings in the
UK in recent years (the diagram has been produced by standardizing the
movements of Qo1, Qozs, Qo.zs, and Qpo, by the median, Qps). We then
check whether the quantiles are moving closer together or farther apart over
time. But although the kind of moving apart that we see at the right-hand
of Fig. 2.9 appears to indicate greater dispersion, it is not clear that this
necessarily means greater inequality: the movement of the corresponding
income shares (which we discuss in a moment) could in principle be telling
us a different story.’

However, we might also be interested in the simple quantile ranking of the
distributions, which focuses on the absolute values of the quantiles, rather
than quantile ratios. For example, suppose that over time all the quantiles
of the distribution increase by 30 per cent as shown by the curve labelled
‘hypothetical’ in Fig. 2.8 (in the jargon we then say that according to the
quantile ranking the new distribution dominates the old one). Then we might
say ‘there are still lots of dwarfs about’, to which the reply might be ‘yes but
at least everybody is a bit taller’. Even if we cannot be specific about whether
this means that there is more or less inequality as a result, the phenomenon

° In case this is not obvious, consider a population with just 8 people in it: in year A the
income distribution is (2,3, 3,4, 5,6,6,7), and it is fairly obvious that Qp2s =3 and Qq7s = 6;
in year B the distribution becomes (0, 4, 4,4, 5, 5,5,9) and we can see now that Qs =4 and
Qo.7s = 5. Mean income and median income have remained unchanged and the quartiles have
narrowed: but has inequality really gone down? The story from the shares suggests otherwise:
the share of the bottom 25 per cent has actually fallen (from 5/36 to 4/36) and the share of the
top 25 per cent has risen (from 13/36 to 14/36).
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of a clear quantile ranking is telling us something interesting about the
income distribution which we will discuss more in the next chapter. On the
other hand if we were to compare 1981/2 and 1984/5 in Fig. 2.8 we would
have to admit that over the three year period the giants became a little taller
(Qo.s increased slightly), but the dwarfs became even shorter (Qp, decreased
slightly): the 1984/5 distribution does not dominate that for 1981/2.

Shares by contrast are most easily interpreted in terms of Fig. 2.4. An
interesting question to ask ourselves in comparing two income distributions
is: does the Lorenz curve of one lie wholly ‘inside’ (closer to the line of
perfect equality) than that of the other? If it does, then we would probably
find substantial support for the view that the ‘inside’ curve represents a more
evenly-spread distribution. To see this point take a look at Fig. 2.10, and
again do an exercise similar to that which we carried out for the quantiles
in Fig. 2.8: for reference let us mark in the share that would accrue to the
bottom 20 per cent and to the bottom 80 per cent in distribution B (which
is the distribution before tax—the same as the Lorenz curve that we had in
Fig. 2.4)—this yields the blobs on the vertical axis. Now suppose we look
at the Lorenz curve marked A, which depicts the distribution for after tax
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F1G. 2.10. Ranking by shares. UK 1984/5 incomes before and after tax
Source: as for Fig. 2.1
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income. As we might have expected, Fig. 2.10 shows that people in the
bottom 20 per cent would have received a larger slice of the after-tax cake
(curve A) than they used to get in B. So also those in the bottom 80 per cent
received a larger proportionate slice of the A-cake than their proportionate
slice of the B-cake (which of course is equivalent to saying that the richest
20 per cent gets a smaller proportionate slice in A than it received in B). It is
clear from the figure that we could have started with any other reference
population proportions and obtained the same type of answer: whatever
‘bottom proportion’ of people F (y) is selected, this group gets a larger share
of the cake ®(y) in A than in B (according to the shares ranking, A dominates
B). Moreover, it so happens that whenever this kind of situation arises all the
inequality measures that we have presented (except just perhaps v and v;)
will indicate that inequality has gone down.

However, quite often this sort of neat result does not apply. If the Lorenz
curves intersect, then the shares-ranking principle cannot tell us whether
inequality is higher or lower, whether it has increased or decreased. Either
we accept this outcome with a shrug of the shoulders, or we have to use a
tie-breaker. This situation is illustrated in Fig. 2.11, which depicts the way in
which the distribution of income after tax changed from 1981/2 to 1984/5.
Notice that the bottom 20 per cent of the population did proportionately
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F1G. 2.11. Lorenz curves crossing
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better under 1984/5 than in 1981/2 (see also the close-up in Fig. 2.12),
whilst the bottom 80 per cent did better in 1981/2 than in 1984/5 (see also
Fig. 2.13). We shall have a lot more to say about this kind of situation in
Chapter 3.

2.4 From charts to analysis

We have seen how quite a large number of ad hoc inequality measures are
associated with various diagrams that chart inequality, which are themselves
interlinked. But, however appealing each of these pictorial representations
might be, we seem to find important reservations about any of the associated
inequality measures. Perhaps the most unsatisfactory aspect of all of these
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indices is that the basis for using them is indeed ad hoc: the rationale for
using them was based on intuition and a little graphical serendipity. What
we really need is proper theoretical basis for comparing income distributions
and for deciding what constitutes a ‘good’ inequality measure.

This is where the ranking techniques that we have been considering come
in particularly useful. Although they are indecisive in themselves, they yet
provide a valuable introduction to the deeper analysis of inequality measure-
ment to be found in the next chapter.

2.5 Questions

1.

Explain how to represent median income in Pen’s Parade. How would
you represent the upper and lower quartiles? (See footnote 8).

. Describe how the following would look:

(a) Pen’s Parade with negative incomes.

(b) The Lorenz curve if there were some individuals with negative
incomes but mean income was still positive.

(c) The Lorenz curve if there were so many individuals with negative
incomes that mean income itself was negative. (See the Technical
Appendix, page 169, for more on this.)

. DeNavas-Walt et al. (2008) present a convenient summary of United

States’ income distribution data based on the Annual Social and
Economic Supplement to the 2008 Current Population Survey.

(a) How would the information in their Table A-1 need to be adapted
in order to produce charts similar to Fig. 2.2?

(b) Use the information in Table A-3 to construct Pen’s Parade for
1967, 1987, 2007: how does the Parade appear to have shifted over
40 years?

(c) Use the information in Table A-3 to construct the Lorenz curves
for 1967, 1987, 2007: what has happened to inequality over the
period? (Document is available on-line using the link on the website
http://darp.lse.ac.uk/MI3)

. Reconstruct the histogram for the UK 1984/5, before tax income, using

the file ‘ET income distribution’ on the website (see the Technical
Appendix page 177 for guidance on how to use the file). Now merge
adjacent pairs of intervals (so that, for example, the intervals [£0,£2000]
and [£2000,£3000] become [£0,£3000]) and redraw the histogram: com-
ment on your findings.

. Using the same data source for the UK 1984/5, before-tax income, con-

struct the distribution function corresponding to the histogram drawn
in Question 4. Now, instead of assuming that the distribution of income
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tfollows the histogram shape, assume that within each income interval
all income receivers get the mean income of that interval. Again draw
the distribution function. Why does it look like a flight of steps?

. Suppose a country’s tax and benefit system operates so that taxes

payable are determined by the formula

tly — yol

where y is the person’s original (pre-tax) income, t is the marginal
tax rate and yp is a threshold income. Persons with incomes below
Jo receive a net payment from the government (‘negative tax’). If the
distribution of original income is y1, y». ..., ¥y, use the formulas given
in the Technical Appendix (page 155) to write down the coefficient of
variation and the Gini coefficient for after tax income. Comment on
your results.

. Suppose the income distribution before tax is represented by a set of

numbers {yay, Y2, ---» Y}, where ya) < ye) < ¥3).... Write down an
expression for the Lorenz curve. If the tax system were to be of the
form given in Question 6, what would be the Lorenz curve of dispos-
able (after-tax) income? Will it lie above the Lorenz curve for original
income? (For further discussion of the point here, see Jakobsson 1976
and Eichhorn et al. 1984.)

8. (a) Ruritania consists of six districts that are approximately of equal
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size in terms of population. In 2007 per-capita incomes in the six
districts were:

* Rural ($500, $500, $500);

e Urban ($20,000, $28,284, $113,137).

What is the mean income for the Rural districts, for the Urban
districts, and for the whole of Ruritania. Compute the logarithmic
variance, the relative mean deviation, and the Gini coefficient for
the Rural districts and the Urban districts separately and for the
whole of Ruritania. (You will find that these are easily adapted

from the file ‘East-West’ on the website, and you should ignore any
income differences within any one district.)

(b) By 2008 the per-capita income distribution had changed as follows:
e Rural: (§499, $500, $501);
e Urban: ($21,000, $26,284, $114,137).

Rework the computations of part (a) for the 2008 data. Did inequal-
ity rise or fall between 2007 and 2008? (See the discussion on page
65 below for an explanation of this phenomenon.)
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Analysing Inequality

‘He’s half a millionaire: he has the air but not the million.’

Jewish Proverb

In Chapter 2 we looked at measures of inequality that came about more
or less by accident. In some cases a concept was borrowed from statistics
and pressed into service as a tool of inequality measurement. In others a
useful diagrammatic device was used to generate a measure of inequality
that ‘naturally’ seemed to fit it, the relative mean deviation and the Parade,
for example; or the Gini coefficient and the Lorenz curve.

Social welfare
Information theory
Structural approach

APPROACHES TO INEQUALITY
ANALYSIS

However, if we were to follow the austere and analytical course of rejecting
visual intuition, and of constructing an inequality measure from ‘first princi-
ples’, what approach should we adopt? I shall outline three approaches, and
in doing so consider mainly special cases that illustrate the essential points
easily without pretending to be analytically rigorous. The first method we
shall examine is that of making inequality judgements and deriving inequal-
ity measures from social welfare functions. The social welfare function itself
may be supposed to subsume values of society regarding equality and justice,
and thus the derived inequality measures are given a normative basis. The
second method is to see the quantification of inequality as an offshoot of
the problem of comparing probability distributions: to do this we draw
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upon a fruitful analogy with information theory. The final—structural—
approach is to specify a set of principles or axioms sufficient to determine
an inequality measure uniquely; the choice of axioms themselves, of course,
will be determined by what we think an inequality measure ‘should’ look
like. Each of these approaches raises some basic questions about the meaning
and interpretation of inequality.

3.1 Social welfare functions

One way of introducing social values concerning inequality is to use a
social welfare function (SWF) which simply ranks all the possible states of
society in the order of (society’s) preference. The various ‘states’ could be
functions of all sorts of things—personal income, wealth, size of people’s
cars—but we usually attempt to isolate certain characteristics which are
considered ‘relevant’ in situations of social choice. We do not have to con-
cern ourselves here with the means by which this social ranking is derived.
The ranking may be handed down by parliament, imposed by a dictator,
suggested by the trade unions, or simply thought up by the observing
economist—the key point is that its characteristics are carefully specified
in advance, and that these characteristics can be criticized on their own
merits.

In its simplest form, a social welfare function simply orders social states
unambiguously: if state A is preferable to state B then, and only then,
the SWF has a higher value for state A than that for state B. How may
we construct a useful SWE? To help in answering this question I shall list
some properties that it may be desirable for the SWF to possess; we shall
be examining their economic significance later. First let me introduce a pre-
liminary piece of notation: let y;4 be the magnitude of person i’s ‘economic
position’ in social state A, where i is a label that can be any number between
1 and n inclusive. For example, y;4 could be the income of Mr Jones of
Potter’s Bar in the year 1984. Where it does not matter, the A-suffix will be
dropped.

Now let us use this device to specify five characteristics of the SWE. The
first three are as follows:

e The SWF is individualistic and nondecreasing, if the welfare level in any
state A, denoted by a number Wj, can be written:

Wi = W(Y1a, Y2As -« Vur)

and, if y;p > yia for all i implies, ceteris paribus, that W5 > Wj, which in
turn implies that state B is at least as good as state A.
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e The SWF is symmetric if it is true that, for any state,

W, Voo oo s V) = WO, V1s oo os V) = oo = W, Vau oo, 11)-

This means that the function Wtreats individual incomes anonymously:
the value of W does not depend on the particular assignment of labels
to members of the population.

e The SWF is additive if it can be written

W, V2o V) = D Ui(r) = Ur(yn) + Ua(y2) + ...+ Un(y), 3.1)

i=1

where Uj is a function of y; alone, and so on.

If these three properties are all satisfied then we can write the SWF like
this:

n
WL, Yz, - V) = D Um) =U() +U(a) +...+ U(y), (3.2)
i=1
where U is the same function for each person and where U (y;) increases with
yi. If we restrict attention to this special case the definitions of the remaining
two properties of the SWF can be simplified, since they may be expressed in
terms of the function U alone. Let us call U(y1) the social utility of, or the
welfare index for, person 1. The rate at which this index increases is

au(y,)
d )41 ’

which can be thought of as the social marginal utility of, or the welfare weight
for, person 1. Notice that, because of the first property, none of the welfare
weights can be negative. Then properties 4 and 5 are:

U(n) =

* The SWF is strictly concave if the welfare weight always decreases as y;
increases.

* The SWF has constant elasticity, or constant relative inequality aversion if
U(y;) can be written
1-¢

i -1

U(y)) = +—— 3.3

() = " (33)

(or in a cardinally equivalent form), where ¢ is the inequality aversion
parameter, which is non-negative. !

I must emphasize that this is a very abbreviated discussion of the properties
of SWFs. However, these five basic properties—or assumptions about the
I Notice that I have used a slightly different cardinalization of U from that employed in the

first edition (1977) of this book in order to make the presentation of figures a little clearer. This
change does not affect any of the results.
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SWF—are sufficient to derive a convenient purpose-built inequality measure,
and thus we shall examine their significance more closely.

The first of the five properties simply states that the welfare numbers
should be related to individual incomes (or wealth, etc.) so that if any
person’s income goes up social welfare cannot go down. The term ‘individ-
ualistic’ may be applied to the case where the SWF is defined in relation to
the satisfactions people derive from their income, rather than the incomes
themselves. I shall ignore this point and assume that any standardization
of the incomes, y;, (for example to allow for differing needs) has already
been performed.? This permits a straightforward comparison of the indi-
vidual levels, and of differences in individual levels, of people’s ‘economic
position’—represented by the y; and loosely called ‘income’. The idea that
welfare is non-decreasing in income is perhaps not as innocuous as it first
seems: it rules out, for example, the idea that if one disgustingly rich person
gets richer still whilst everyone else’s income stays the same, the effect on
inequality is so awful that social welfare actually goes down.

Given that we treat these standardized incomes y; as a measure that
puts everyone in the population on an equal footing as regards needs and
desert, the second property (symmetry) naturally follows—there is no reason
why welfare should be higher or lower if any two people simply swapped
incomes.

The third assumption is quite strong, and is independent of the second.
Suppose you measure W — Wj, the increase in welfare from state A to state
B, where the only change is an increase in person 1’s income from £20,000
to £21,000. Then the additivity assumption states that the effect of this
change alone (increasing person 1’s income from £20,000 to £21,000) is
quite independent of what the rest of state A looked like—it does not matter
whether everyone else had £1 or £100,000, W — W, is just the same for this
particular change. However, this convenient assumption is not as restrictive
in terms of the resulting inequality measures as it might seem at first sight—
this will become clearer when we consider the concept of ‘distance’ between
income shares later.

We could have phrased the strict concavity assumption in much more
general terms, but the discussion is easier in terms of the welfare index U.
Note that this is not an ordinary utility function (such as might be used to
characterize the benefit that an individual gets from his income), although it
may have very similar properties: it represents the valuation given by society
of a person’s income. One may think of this as a ‘social utility function’.

2 Once again notice my loose use of the word ‘person’. In practice incomes may be received by
households or families of differing sizes, in which case y; must be reinterpreted as ‘equivalized’
incomes: see page 109 for more on this.
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In this case, the concept corresponding to ‘social marginal utility’ is the
quantity U’(y;), which we have called the welfare weight. The reason for the
latter term is as follows. Consider a government programme which brings
about a (small) change in everyone’s income: Ay;, Ay,, ..., Ay,. What is the
change in social welfare? It is simply

AW=U'(y1) oy +U' () Ay + ...+ U (Yu) AYa,

so the U’-quantities act as a system of weights when summing the effects
of the programme over the whole population. How should the weights be
fixed? The strict concavity assumption tells us that the higher a person’s
income, the lower the social weight he is given. If we are averse to inequality
this seems reasonable—a small redistribution from rich to poor should lead
to a socially-preferred state.

Nondecreasing in incomes
Symmetric
Additive

Strictly concave

Constant elasticity

SOME PROPERTIES OF THE SOCIAL
WELFARE FUNCTION

It is possible to obtain powerful results simply with the first four
assumptions—omitting the property that the U-function has constant elas-
ticity. But this further restriction on the U-function—constant relative
inequality aversion—turns the SWF into a very useful tool.

If a person’s income increases, we know (from the strict concavity prop-
erty) that his welfare weight necessarily decreases—but by how much? The
constant elasticity assumption states that the proportional decrease in the
weight U’ for a given proportional increase in income should be the same
at any income level. So if a person’s income increases by 1% (from £100
to £101, or £100,000 to £101,000) his welfare weight drops by €% of its
former value. The higher is €, the faster is the rate of proportional decline
in welfare weight to proportional increase in income—hence its name as the
‘inequality aversion parameter’. The number ¢ describes the strength of our
yearning for equality vis a vis uniformly higher total income.
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Table 3.1. How much should R give up
to finance a £1 bonus for P?

value of ¢ maximum amount of sacrifice by R

0 £1.00
! £2.24
1 £5.00
2 £25.00
3 £125.00
5 £3,125.00

A simple numerical example may help. Consider a rich person R with five
times the income of poor person P. Our being inequality averse certainly
would imply that we approve of a redistribution of exactly £1 from R to P—
in other words a transfer with no net loss of income. But if £ > 0 we might
also approve of the transfer even if it were going to cost R more than £1 in
order to give £1 to P—in the process of filling up the bucket with some of
Mr R’s income and carrying it over to Ms P we might be quite prepared for
some of the income to leak out from the bucket along the way. In the case
where € =1 we are in fact prepared to allow a sacrifice of up to £5 by R to
make a transfer of £1 to P (£4 leaks out). So, we have the trade-off of social
values against maximum sacrifice as indicated in Table 3.1. Furthermore,
were we to consider an indefinitely large value of &, we would in effect
give total priority to equality over any objective of raising incomes generally.
Social welfare is determined simply by the position of the least advantaged in
society.

The welfare index for five constant-elasticity SWFs are illustrated in
Fig. 3.1. The case € = 0 illustrates that of a concave, but not strictly concave,
SWF; all the other curves in the figure represent strictly concave SWFs.
Figure 3.1 illustrates the fact that as you consider successively higher values
of ¢ the social utility function U becomes more sharply curved (as & goes
up each curve is ‘nested’ inside its predecessor); it also illustrates the point
that for values of & less than unity, the SWF is ‘bounded below’ but not
‘bounded above’: from the € = % curve we see that with this SWF no one
is ever assigned a welfare index lower than —2, but there is no upper limit
on the welfare index that can be assigned to an individual. Conversely, for
& greater than unity, the SWF is bounded above, but unbounded below. For
example, if & = 2 and someone’s income approaches zero, then we can assign
him an indefinitely large negative social utility (welfare index), but no matter
how large a person’s income is, he will never be assigned a welfare index
greater than 1.
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F1G. 3.1. Social utility and relative income

Notice that the vertical scale of this diagram is fairly arbitrary. We could
multiply the U-values by any positive number, and add (or subtract) any
constant to the U-values without altering their characteristics as welfare
indices. The essential characteristic of the different welfare scales represented
by these curves is the elasticity of the function U(y) or, loosely speaking,
the ‘curvature’ of the different graphs, related to the parameter €. For
convenience, I have chosen the units of income so that the mean is now
unity: in other words, original income is expressed as a proportion of the
mean. If these units are changed, then we have to change the vertical scale
for each U-curve individually, but when we come to computing inequal-
ity measures using this type of U-function, the choice of units for y is
immaterial.

The system of welfare weights (social marginal utilities) implied by these
U-functions is illustrated in Fig. 3.2. Notice that for every £ > 0, the welfare
weights fall as income increases. Notice in particular how rapid this fall is
once one reached an ¢-value of only 2: evidently one’s income has only to
be about 45 per cent of the mean in order to be assigned a welfare weight 5
times as great as the weight of the person at mean income.
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U’

FIG. 3.2. The relationship between welfare weight and income

Let us now put the concept of the SWF to work. First consider the ranking
by quantiles that we discussed in connection with Fig. 2.8. The following
result does not make use of either the concavity or the constant-elasticity
properties that we discussed above.

Theorem 1 If social state A dominates the state B according to their quantile
ranking, then Wy > Wy for any individualistic, additive, and symmetric social
welfare function W.

So if the Parade of distribution A lies everywhere above the Parade of
distribution B (as in the hypothetical example of Fig. 2.8 on page 32), social
welfare must be higher for this class of SWFs. This result is a bit more power-
ful than it might at first appear. Compare the distribution A = (5, 3, 6) with
the distribution B = (2, 4, 6): person 1 clearly gains in a move from B to A,
but person 2 is worse off: yet according to the Parade diagram and according
to any symmetric, increasing SWF A is regarded better than B. Why? Because
the symmetry assumption means that A is equivalent to A’ = (3,5, 6), and
there is clearly higher welfare in A’ than in B.

If we introduce the restriction that the SWF be concave then a further very
important result (which again does not use the special constant elasticity
restriction) can be established:

Theorem 2 Let the social state A have an associated income distribution
(714, V24, - - -, Yna) and social state B have income distribution (y1g, V28, - - ., YuB),
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where total income in state A and in state B is identical. Then the Lorenz curve
for state A lies wholly inside the Lorenz curve for state B if and only if Wy > Wj
for any individualistic, increasing, symmetric, and strictly concave social welfare
function W.3

This result shows at once the power of the ranking by shares that we
discussed in Chapter 2 (the Lorenz diagram), and the relevance of SWFs of
the type we have discussed. Re-examine Fig. 2.10. We found that intuition
suggested that curve A represented a ‘fairer’ or ‘more equal’ distribution than
curve B. This may be made more precise. The first four assumptions on the
SWF crystallize our views that social welfare should depend on individual
economic position, and that we should be averse to inequality. Theorem 2
reveals the identity of this approach with the intuitive method of the Lorenz
diagram, subject to the ‘constant amount of cake’ assumption introduced in
Chapter 1. Notice that this does not depend on the assumption that our rel-
ative aversion to inequality should be the same for all income ranges—other
concave forms of the U-function would do. Also it is possible to weaken
the assumptions considerably (but at the expense of ease of exposition) and
leave Theorem 2 intact.

Moreover, the result of Theorem 2 can be extended to some cases where
the cake does not stay the same size. To do this, define the so-called general-
ized Lorenz curve by multiplying the vertical co-ordinate of the Lorenz curve
by mean income (so now the vertical axis runs from O to the mean income
rather than O to 1).

Theorem 3 The generalized Lorenz curve for state A lies wholly above the gen-
eralized Lorenz curve for state B if and only if Wy > W, for any individualistic,
additive increasing, symmetric, and strictly concave social welfare function W.

For example, we noted in Chapter 2 that the simple shares ranking crite-
rion was inconclusive when comparing the distribution of income after tax
in the UK 1981/2 with that for the period 1984/5: the ordinary Lorenz curves
intersect (see Figs 2.11-2.13). Now let us consider the generalized Lorenz
curves for the same two datasets, which are depicted in Fig. 3.3. Notice that
the vertical axis is measured in monetary units, by contrast with that for Figs.
2.4 and 2.10-2.13; notice also that this method of comparing distributions
implies a kind of priority ranking for the mean: as is evident from Fig. 3.3
if the mean of distribution A is higher than the distribution B, then the
generalized Lorenz curve of B cannot lie above that of A no matter how
unequal A may be. So, without further ado, we can assert that any SWF that

3 “Wholly inside’ includes the possibility that the Lorenz curves for A and B may coincide
somewhere, but not everywhere.
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F1G. 3.3. The generalized Lorenz curve comparison: UK income before tax

is additive, individualistic and concave will suggest that social welfare was
higher in 1984/5 than in 1981/2.

However, although Theorems 1 to 3 provide us with some fundamental
insights on the welfare and inequality rankings that may be inferred from
income distributions, they are limited in two ways.

First, the results are cast exclusively within the context of social welfare
analysis. That is not necessarily a drawback, since the particular welfare
criteria that we have discussed may have considerable intuitive appeal. Nev-
ertheless you might be wondering whether the insights can be interpreted in
inequality without bringing in the social welfare apparatus: that is something
that we shall tackle later in the chapter.

Second, the three theorems are not sufficient for the practical business of
inequality measurement. Lorenz curves that we wish to compare often inter-
sect; so too with Parade diagrams and generalized Lorenz curves. Moreover
we often desire a unique numerical value for inequality in order to make
comparisons of changes in inequality over time or differences in inequality
between countries or regions. This is an issue that we shall tackle right away:
we use the social welfare function to find measures of inequality.
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3.2 SWF-based inequality measures

In fact from (3.2) we can derive two important classes of inequality measure.
Recall our piecemeal discussion of ready-made inequality measures in Chap-
ter 2: we argued there that although some of the measures seemed attractive
at first sight, on closer inspection they turned out to be not so good in
some respects because of the way that they reacted to changes in the income
distribution. It is time to put this approach on a more satisfactory footing by
building an inequality measure from the groundwork of fundamental wel-
fare principles. To see how this is done, we need to establish the relationship
between the frequency distribution of income y—which we encountered in
Fig. 2.2—and the frequency distribution of social utility U.

This relationship is actually achieved through the cumulative frequency
distribution F(y) (Fig. 2.3). To see the relationship examine Fig. 3.4, which
is really three diagrams superimposed for convenience. In the bottom right-
hand quadrant we have plotted one of the ‘welfare-index’, or ‘social utility’
curves from Fig. 3.1, which of course requires the use of the constant elastic-
ity assumption.

In the top right-hand quadrant you will recognize the cumulative fre-
quency distribution, drawn for income or wealth in the usual way. To con-
struct the curves for the distribution of social utility or welfare index U, pick
any income value, let us say yp; then read off the corresponding proportion
of population Fy on the vertical OF axis, using the distribution function F (y),
and also the corresponding U-value (social utility) on OU (bottom right-hand
corner). Now plot the F and U-values in a new diagram (bottom left-hand
corner)—this is done by using the top left-hand quadrant just to reflect OF
axis on to the horizontal OF axis. What we have done is to map the point
(3o, Fo) in the top right-hand quadrant into the point (Fy, Up) in the bottom
left-hand quadrant. If we do this for other y-values and points on the top
right-hand quadrant cumulative frequency distribution, we end up with a
new cumulative frequency distribution in the bottom left-hand quadrant.
(To see how this works, try tracing round another rectangular set of four
points like those shown in Fig. 3.4.)

Once we have this new cumulative frequency distribution in terms of
social utility, we can fairly easily derive the corresponding frequency dis-
tribution itself (this is just the slope of the F-function). The frequency
distributions of y and U are displayed in Fig. 3.5: notice that the points yy
and Uy correspond to the points yy and Uy in Fig. 3.4 (the shaded area in
each case corresponds to Fo).

Now let us derive the inequality measures. For the distribution of income
(top half of Fig. 3.5) mark the position of the mean, y, on the axis Oy. Do the
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F(y)

F(U) Fo N

Uy

U

F1G. 3.4. Distribution of income and distribution of social utility

same for the distribution of social utility—the mean is point U on the axis
OU. We can also mark in two other points of interest:

e The social utility corresponding to y—we do this using the bottom half
of Fig. 3.5—point U(y) on OU.

e The income corresponding to average social utility—we do this by a
reverse process using the top half of Fig. 3.5 and plotting point y,.
on Oy.

The quantity U(y) represents the social utility for each person in the
community were national income to be distributed perfectly equally. The
quantity y,. represents the income which, if received by each member of the
community, would result in the same level of overall social welfare as the
existing distribution yields. Necessarily y, < y)—we may be able to throw
some of the national income away, redistribute the rest equally, and still
end up with the same level of social welfare. Notice that we have drawn
the diagram for a particular isoelastic utility function in the bottom right-
hand quadrant of Fig. 3.4; if &£ were changed, then so would the frequency
distribution in the bottom half of Fig. 3.5, and of course the positions of y
and y,.

Thus we can define a different inequality measure for each value of €, the
inequality aversion parameter. An intuitively appealing way of measuring
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F1G. 3.5. The Atkinson and Dalton indices

inequality seems to be to consider how far actual average social utility
falls short of potential average social utility (if all income were distrib-
uted equally). So we define Dalton’s inequality index (for inequality aversion
£) as:
i [}Viks - 1]
De=1- —1-¢
y -1

which in terms of the diagram means

’

U
U@
We may note that this is zero for perfectly equally distributed incomes (in
which case we would have exactly U = U(y). Atkinson (1970) criticizes the

Dgzl_
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use of De on the grounds that it is sensitive to the level from which social
utility is measured—if you add a non-zero constant to all the Us, D, changes.
Now this does not change the ordering properties of D over different
distributions with the same mean, but the inequality measures obtained by
adding different arbitrary constants to U will not be cardinally equivalent. So
Atkinson suggests, in effect, that we perform our comparisons back on the
Oy axis, not the OU axis, and compare the ‘equally distributed equivalent’
income, y,, with the mean y. To do this, we write U-! for the inverse of
the function U (so that U~! (a) gives the income that would yield social
utility level a). Then we can define Atkinson’s inequality index (for inequality
aversion &) as just
-1
AS =1-— (];U)’

where, as before, U is just average social utility %Z?:l U(yi). Using the
explicit formula (3.3) for the function U we get

) 1Ty 1—e7 e
Ag‘l‘{ng[y} } -

In terms of the diagram this is:
Ag = 1 — K_e.
b

Once again, as for the index Dg, we find a different value of A, for different
values of our aversion to inequality.

From the definitions we can check that the following relationship holds
for all distributions and all values of &

U1 - Ael)
1-Dg=—"——",
U@

which means that
0D _ U'(P[1 = Ac)
9 A U@y
Clearly, in the light of this property, the choice between the indices Ds
and Ag as defined above is only of vital importance with respect to their
cardinal properties (‘is the reduction in inequality by taxation greater in year

A than in year B?’); they are obviously ordinally equivalent in that they
produce the same ranking of different distributions with the same mean.*

> 0.

4 Instead of lying between zero and unity, D; lies between 0 and co. In order to transform this
into an inequality measure that is comparable with others we have used, it would be necessary to
look at values of D, /[D; + 1]. One might be tempted to suggested that D; is thus a suitable choice
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Of much greater significance is the choice of the value of ¢, especially where
Lorenz curves intersect, as in Fig. 2.11. This reflects our relative sensitivity to
redistribution from the rich to the not-so-rich vis a vis redistribution from the
not-so-poor to the poor. The higher the value of € used, the more sensitive
is the index to changes in distribution at the bottom end of the parade—we
will come to specific examples of this later in the chapter.

The advantage of the SWF approach is evident. Once agreed on the form
of the social welfare function (for example along the lines of assumptions
that I have listed above) it enables the analyst of inequality to say, in effect
‘you tell me how strong society’s aversion to inequality is, and I will tell
you the value of the inequality statistic’, rather than simply incorporating
an arbitrary social weighting in an inequality index that just happens to be
convenient.

3.3 Inequality and information theory

Probability distributions sometimes provide useful analogies for income
distributions. In this section we shall see that usable and quite reasonable
inequality measures may be built up from an analogy with information
theory.

In information theory, one is concerned with the problem of ‘valuing’ the
information that a certain event out of a large number of possibilities has
occurred. Let us suppose that there are events numbered 1,2,3, ..., to which
we attach probabilities pi, ps. p3,.... Each p; is not less than zero (which
represents total impossibility of the event’s occurrence) and not greater than
one (which represents absolute certainty of the event’s occurrence). Suppose
we are told that event #1 has occurred. We want to assign a number h(p;) to
the value of this information: how do we do this?

If event #1 was considered to be quite likely anyway (p; near to 1),
then this information is not fiercely exciting, and so we want h(p;) to be
rather low; but if event #1 was a near impossibility, then this information is
amazing and valuable—it gets a high h(p;). So the implied value h(p;) should
decrease as p; increases. A further characteristic which it seems correct that
h(.) should have (in the context of probability analysis) is as follows. If
event #1 and event #2 are statistically independent (so that the probability
that event #1 occurs does not depend on whether or not event #2 occurs,

as A.. However, even apart from the fact that D, depends on the cardinalization of utility there
is another unsatisfactory feature of the relationship between D, and . For Atkinson’s measure,
A, the higher is the value of ¢, the greater the value of the inequality measure for any given
distribution; but this does not hold for D,.
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and vice versa), then the probability that both event #1 and event #2 occur
together is p; p2. So, if we want to be able to add up the information values
of messages concerning independent events, the function h should have the
special property

h(p1p2) = h(p1) + h(p2) (3.4)

and the only function that satisfies this for all valid p-values is h = —log(p).

However, a set of n numbers—the probabilities relating to each of n
possible states—is in itself an unwieldy thing with which to work. It is
convenient to aggregate these into a single number which describes the
‘degree of disorder’ of the system. This number will be lowest when there
is a probability of 1 for one particular event i and a O for every other event:
in this case the system is completely orderly and the information that i has
occurred is valueless (we already knew it would occur) whilst the other events
are impossible; the overall information content of the system is zero. More
generally we can characterize the ‘degree of disorder'—known technically as
the entropy—by working out the average information content of the system.
This is the weighted sum of all the information values for the various events;
the weight given to event i in this averaging process is simply its probability
pi: In other words we have:

entropy = Y~ pih(pi)

i=1

n
= - pilog(p).
i=1
Now Theil (1967) has argued that the entropy concept provides a useful
device for inequality measurement. All we have to do is reinterpret the n
possible events as n people in the population, and reinterpret p; as the share
of person i in total income, let us say s;. If y is mean income, and y; is the
income of person i then:

4

Si=-—=,
ny

so that, of course:

n
ZS,‘ =1.
i=1

Then subtracting the actual entropy of the income distribution (just replace
all the p;s with s;s in the entropy formula) from the maximum possible value
of this entropy (when each s; = 1/n, everyone gets an even share) we find the
following contender for status as an inequality measure.
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n 1 1 n

T=) —h(-)- ih(si

; nh<n> és h(s;)

"2 [ () -

i | log (si) — log ( )}

()
SRV
Each of these four expressions is an equivalent way of writing the measure T.

A diagrammatic representation of T can be found in Figs 3.6 and 3.7. In
the top right-hand corner of Fig. 3.6, the function log(%) is plotted (along

| —

:.M—*

y/y
=log(y/y)
Parade
F 0 -h
Lorenz \\
curve
[}
Theil
curve

F1G. 3.6. The Theil curve
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-h

F1G. 3.7. Theil’s entropy index

the horizontal axis) against % (along the vertical axis). In the top left-hand
corner we have the Parade, slightly modified from Fig. 2.1, whilst in the
bottom left-hand corner we have the Lorenz curve (upside down). We can
use these three curves to derive the Theil curve in the bottom right hand
corner of Fig. 3.6. The method is as follows.

56

Pick a particular value of F.
Use the Parade diagram (top left) to find the corresponding value of
y/y—in other words the appropriate quantile divided by the mean.

Also use the Lorenz curve (bottom left) to find the corresponding
®-value for this same F-value—in other words, find the income share
of the group in population that has an income less than or equal to y.
Read off the ‘—h’ value corresponding to % using the log function shown
top right.

You have now fixed a particular point in the bottom right-hand part of
the figure as shown by dotted rectangle.

By repeating this for every other F-value, trace out a curve—the Theil
curve—in the bottom right-hand corner.
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If you are not yet convinced, you may care to try plotting another set of
four points as an exercise. This Theil curve charts the ‘information function’
against income shares. Unfortunately the entire curve cannot be shown in
Fig. 3.6 since it crosses the 0® axis; to remedy this I have drawn a fuller
picture of the curve in Fig. 3.7 (which is drawn the logical way up, with 0®
along the horizontal axis). The measure T is then simply the area trapped
between this curve and the 0® axis—shown as a shaded area.

However, this merely tells us about the mechanics of Theil’s measure;
we need to look more closely at its implications for the way we look at
inequality. To do this, examine what happens to T if the share of a poor
person (1) is increased at the expense of a rich person (2). So let the share
of person 1 increase from s; to a fractionally larger amount s; + As and the
share of 2 decrease to s, — As. Then, remembering that h(s) = —log(s), we
find (by differentiation) that the resulting change in T is:

AT = As[h(sz) — h(s1)]

= —Aslog (?)
1

As we would expect, the proposed transfer As results in a negative AT, so that
the inequality index decreases. But we can say a little more than that. We see
that the size of the reduction in T depends only on the ratio of s; to s;. So
for any two people with income shares in the same ratio, the transfer s (as
above) would lead to the same reduction in inequality T. Thus, for example,
a small transfer of from a person with an income share of 2 millionths, to
a person with only 1 millionth of the cake, has the same effect on Theil
inequality as an identical transfer from a person with 8 millionths of the
national cake to one with 4 millionths.

This helps us to complete our analogy between inequality measurement
and information theory. It is easy to see that income shares (s;) serve as
counterparts to probabilities (p;). And now we can interpret the ‘social
analogue’ of the information function h. Evidently, from the formula for AT,
we can now say under what circumstances s; and s4 are the same ‘distance
apart’ as s, and s;. This would occur if

h(s1) — h(sz) = h(s3) — h(s4).

so that a small transfer from s, to s; has exactly the same effect on inequality
as a small transfer from s4 to s3. Given this interpretation of h(s) in terms of
distance, do we want it to have exactly the same properties as h(p) in infor-
mation theory? There does not seem to be any compelling a priori reason
why we should do so,® although h(s) = —log(s) gives us a reasonably sensible

5 Recall that the log-function was chosen in information theory so that h(p; p2) = h(p1) + h(p2).
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h(s)

0 | | | |
0 0.2 0.4 P 0.6 0.8 1

FI1G. 3.8. A variety of distance concepts

inequality measure, T. The function, —log(s) can be seen as a member of
a much wider class of functions, illustrated in Fig. 3.8. This figure charts
members of the family of curves given by®
1-sf
h(s) = .
B

Deriving an inequality measure in exactly the same way as before gives us,
for any value of B that we choose, a particular inequality measure which may
be written in any of the following equivalent ways:

1 "1 /1 “
oY [Z —h (E) - gsih(si)} , (3.5)

i=1

1 < 1
1rp e [h <E) _5’} | o
i=1
1 n
m Zsl‘ I:SIB - n_ﬁ] . (37)

6 Again I have slightly modified the definition of this function from the first edition in order
to make the presentation neater, although this reworking does not affect any of the results—see
footnote 3.1.
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And of course the effect of a small transfer of 4s from rich person 2 to poor
person 1 is now

1
3 [s‘zg - sf] Vi
= [h(s2) — h(s1)] 4s.

You get the same effect by transferring 4s from rich person 4 to poor person
3 if and only if the ‘distance’ h(ss) — h(s3) is the same as the ‘distance’ h(sz) —
h(s1). Let us look at some specific examples of this idea of distance and the
associated inequality measures.

e First let us look at the case g = —1. We obtain the following measure:

—> log(nsi); (3.8)

i=1
this is n times the so-called mean logarithmic deviation (MLD)

n

L= 1> flog(1/m) ~log (5)]. (3.9)

i=1

As the name suggests, L is the average deviation between the log income
shares and the log shares that would represent perfect equality (equal to
1/n). The associated distance concept is given by
1 1

h(s1) — h(s2) = — — —.

(s1) — h(s2) 5 s

* The special case where g = 0 simply yields the measure T once again. As

we noted, this implies a relative concept of distance: s, and s; are the
same distance apart as s4 and s3 if the ratios s,/s1 and s4/s3 are equal.

* Finally let us consider f=1. Then we get the following information

theoretic measure:
1T, 1
- st —— .
i3]

Now Herfindahl’s index is simply

H= Zs,z

i=1

that is, the sum of the squares of the income shares. So, comparing
these two expressions, we see that for a given population, H is car-
dinally equivalent to the information theoretic measure with a value
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of B=1; and in this case we have the very simple absolute distance
measure

h(s1) — h(s2) = 51 — s2.

In this case the distance between a person with a 1 per cent share and
one with a 2 per cent share is considered to be the same as the distance
between a person with a 4 per cent share and one with a 5 per cent
share.

Thus, by choosing an appropriate ‘distance function’, we determine a
particular ‘information theoretic’ inequality measure. In principle we can
do this for any value of B. Pick a particular curve in Fig. 3.8: the ‘distance’
between any two income shares on the horizontal axis is given by the linear
distance between their two corresponding points on the vertical axis. The
B-curve of our choice (suitably rotated) can then be plugged into the top
left-hand quadrant of Fig. 3.6, and we thus derive a new curve to replace
the original in the bottom right-hand quadrant, and obtain the modified
information theoretic inequality measure. Fach distance concept is going to
give different weight on the gaps between income shares in different parts
of the income distribution. To illustrate this, have a look at the example
in Table 3.2: the top part of this gives the income for three (out of many)
individuals, poor P, rich R, and quite-well-off Q, and their respective shares
in total income (assumed to be £1,000,000); the bottom part gives the

Table 3.2. Is P further from Q than Q is

from R?
income share
person P £2,000 0.2%
person Q £10,000 1.0%
person R £50,000 5.0%
all: £1,000,000 100%
distance distance

B h(si) — h(sj) (P, Q) QR

-1 - 37 400 80
0 log(¥) log(5) log(5)
1 sj—si 0.008 0.04
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implied distance from P to Q and the implied distance from Q to R for
three of the special values of g that we have discussed in detail. We can
see that for = —1 the (P, Q)-gap is ranked as greater than the (Q,R)-gap;
for =1 the reverse is true; and for 8 =0, the two gaps are regarded as
equivalent.

Notice the formal similarity between choosing one of the curves in Fig.
3.8 and choosing a social utility function or welfare index in Fig. 3.1. If
we write g = —& , the analogy appears to be almost complete: the choice of
‘distance function’ seems to be determined simply by our relative inequality
aversion. Yet the approach of this section leads to inequality measures that
are somewhat different from those found previously. The principal difference
concerns the inequality measures when g > 0. As we have seen, the modified
information theoretic measure is defined for such values. However, A, and
D, become trivial when & is zero (since Ay and Dy are zero whatever the
income distribution); and usually neither A¢ nor D, is defined for &€ < 0
(corresponding to B > 0). Furthermore, even for positive values of &—where
the appropriate, modified, information theoretic measure ranks any set of
income distributions in the same order as A and D;—it is evident that the
Atkinson index, the Dalton index, and the information theoretic measure
will not be cardinally equivalent. Which forms of inequality measure should
we choose then? The remainder of this chapter will deal more fully with this
important issue.

3.4 Building an inequality measure

What we shall now do is consider more formally the criteria we want satisfied
by inequality measures. You may be demanding to know why this has not
been done before. The reason is that I have been anxious to trace the ori-
gins of inequality measures already in use and to examine the assumptions
required at these origins.

Weak principle of transfers
Income scale independence
Principle of population
Decomposability

Strong principle of transfers

FIVE PROPERTIES OF INEQUALITY
MEASURES
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However, now that we have looked at ad hoc measures, and seen how the
SWF and information theory approaches work, we can collect our thoughts
on the properties of these measures. The importance of this exercise lies not
only in the drawing up of a shortlist of inequality measures by eliminating
those that are ‘unsuitable’. It also helps to put personal preference in per-
spective when choosing among those cited in the shortlist. Furthermore, it
provides the basis for the third approach of this chapter: building a particular
class of mathematical functions for use as inequality measures from the
elementary properties that we might think that inequality measures ought
to have. It is in effect a structural approach to inequality measurement.

This is a trickier task, but rewarding nonetheless; to assist us there is a
check-list of the proposed elementary criteria in the accompanying box.
Let us look more closely at the first four of these: the fifth criterion will
be discussed a bit later.

Weak Principle of Transfers

In Chapter 2 we were interested to note whether each of the various inequal-
ity measures discussed there had the property that a hypothetical transfer of
income from a rich person to a poor person reduces measured inequality.
This property may now be stated more precisely. We shall say that an
inequality measure satisfies the weak principle of transfers if the following is
always true. Consider any two individuals, one with income y, the other, a
richer person, with income y + 6 where § is positive. Then transfer a positive
amount of income Ay from the richer to the poorer person, where Ay is less
than 24. Inequality should then definitely decrease. If this property is true
for some inequality measure, no matter what values of y and y + 8 we use,
then we may use the following theorem.

Theorem 4 Suppose the distribution of income in social state A could be achieved
by a simple redistribution of income in social state B (so that total income is the
same in each case) and the Lorenz curve for A lies wholly inside that of B. Then,
as long as an inequality measure satisfies the weak principle of transfers, that
inequality measure will always indicate a strictly lower level of inequality for state
A than for state B.

This result is not exactly surprising if we recall the interpretation of the
Lorenz curve in Chapter 2: if you check the example given in Fig. 2.10 on
page 34 you will see that we could have got to state A from state B by a series
of richer-to-poorer transfers of the type mentioned above. However, The-
orem 4 emphasizes the importance of this principle for choosing between
inequality measures. As we have seen V, ¢, G, L, T, H, Ag, De (¢ > 0),
and the modified information theory indices all pass this test; v and v,
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fail the test in the case of high incomes—it is possible for these to rank
B as superior to A. The other measures, R, M, the equal shares coefficient,
etc., just fail the test—for these measures it would be possible for state A’s
Lorenz curve to lie partly ‘inside’ and to lie nowhere ‘outside’ that of state
B, and yet exhibit no reduction in measured inequality. In other words,
we have achieved a situation where there has been some richer-to-poorer
redistribution somewhere in the population, but apparently no change in
inequality occurs.”

I have qualified the definition given above as the weak principle of trans-
fers, because all that it requires is that given the specified transfer, inequality
should decrease. But it says nothing about how much it should decrease.
This point is considered further when we get to the final item on the list of
properties.

Income Scale Independence

This means that the measured inequality of the slices of the cake should not
depend on the size of the cake. If everyone’s income changes by the same
proportion then it can be argued that there has been no essential alteration
in the income distribution, and thus that the value of the inequality measure
should remain the same. This property is possessed by all the inequality
measures we have examined, with the exception of the variance V, and
Dalton’s inequality indices.® This is immediately evident in the case of those
measures defined with respect to income shares s;, since a proportional
income change in all incomes leaves the shares unchanged.

Principle of Population

This requires that the inequality of the cake distribution should not depend
on the number of cake-receivers. If we measure inequality in a particular
economy with n people in it, and then merge the economy with another
identical one, we get a combined economy with a population of 2n, and
with the same proportion of the population receiving any given income. If
measured inequality is the same for any such replication of the economy,
then the inequality measure satisfies the principle of population.

However, it is not self-evident that this property is desirable. Consider
a two-person world where one person has all the income and the other
has none. Then replicate the economy as just explained, so that one now

7 However, this type of response to a transfer might well be appropriate for poverty measures
since these tools are designed for rather different purposes.

8 Whether a Dalton index satisfies scale independence or not will depend on the particular
cardinalization of the function U that is used.
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has a four-person world with two destitute people and two sharing income
equally. It seems to me debatable whether these two worlds are ‘equally
unequal’. In fact, nearly all the inequality measures we have considered
would indicate this, since they satisfy the principle of population. The
notable exceptions are the modified information theoretic indices: if 8 =0
(the original Theil index) the population principle is satisfied, but otherwise
as the population is increased the measure will either increase (the case
where 8 < 0) or decrease (the case where 8 > 0, including Herfindahl’s index
of course). However, as we shall see in a moment, it is possible to adapt
this class of measures slightly so that the population principle is always
satisfied.

Decomposability

This property implies that there should be a coherent relationship between
inequality in the whole of society and inequality in its constituent parts. The
basic idea is that we would like to be able to write down a formula giving
total inequality as a function of inequality within the constituent subgroups,
and inequality between the subgroups. More ambitiously we might hope to
be able to express the within-group inequality as something like an average
of the inequality in each individual subgroup. However, in order to do either
of these things with an inequality measure, it must have an elementary
consistency property: that inequality rankings of alternative distributions
in the population as a whole should match the inequality rankings of
the corresponding distributions within any of the subgroups of which the
population is composed.

This can be illustrated using a pair of examples, using artificial data spe-
cially constructed to demonstrate what might appear as a curious phenom-
enon. In the first we consider an economy of six persons that is divided
into two equal-sized parts, East and West. As is illustrated in Table 3.3, the
East is much poorer than the West. Two economic programmes (A and B)
have been suggested for the economy: A and B each yield the same mean
income (7) in the East, but they yield different income distribution amongst
the Easterners; the same story applies in the West—A and B yield the same
mean income (63.33) but a different income distribution. Taking East and
West together, it is clear that the choice between A and B lies exclusively in
terms of the impact upon inequality within each region; by construction,
income differences between the regions are unaffected by the choice of A or
B. Table 3.3 lists the values of four inequality measures—the Gini coefficient,
two Atkinson indices and the Theil index—and it is evident that for each of
these inequality would be higher under B than it would be under A. This
applies to the East, to the West, and to the two parts taken together.
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Table 3.3. The breakdown of inequality: poor East, rich West

East West
A: (6,7, 8) A: (30, 30, 130)
B: (6, 6, 9) B: (10, 60, 120)
A B A B
y 7.00 7.00 1% 63.33 63.33
G 0.063 0.095 G 0.351 0.386
Aq 0.007 0.019 Aq 0.228 0.343
Az 0.014 0.036 A; 0.363 0.621
T 0.007 0.020 T 0.256 0.290

East and West combined
A: (6, 7, 8, 30, 30, 130)
B: (6, 6, 9, 10, 60, 120)

A B
y  35.16 35.16
G 0.562 0.579
Aq 0.476 0.519
Az 0.664 0.700
T 0.604 0.632

All of this seems pretty unexceptionable: all of the inequality measures
would register an increase overall if there were a switch from A to B,
and this is consistent with the increase in inequality in each component
subgroup (East and West) given the A—B switch. We might imagine that
there is some simple formula linking the change in overall inequality to
the change in inequality in each of the components. But now consider
the second example, illustrated in Table 3.4. All that has happened here
is that the East has caught up and overtaken the West: Eastern incomes
under A or B have grown by a factor of 10, while Western incomes have
not changed from the first example. Obviously inequality within the Eastern
part and within the Western part remains unchanged from the first example,
as a comparison of the top half of the two tables will reveal: according to
all the inequality measures presented here inequality is higher in B than
in A. But now look at the situation in the combined economy after the
East’s income has grown (the lower half of Table 3.4): inequality is higher
in B than in A according to the Atkinson index and the Theil index, but
not according to the Gini coefficient. So, in this case, in switching from
A to B the Gini coefficient in the East would go up, the Gini coefficient
in the West would go up, inequality between East and West would be
unchanged, and yet...the Gini coefficient overall would go down. Strange
but true.’

° There is a bit more to the decomposability story and the Gini coefficient, which is explained
in the Technical Appendix—see page 165.
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Table 3.4. The breakdown of inequality: the East catches up

East West
A: (60, 70, 80) A: (30, 30, 130)
B: (60, 60, 90) B: (10, 60, 120)
A B A B

y 70.00 70.00 y 63.33 63.33
G 0.063 0.095 G 0.351 0.386
Aq 0.007 0.019 Aq 0.228 0.343
A 0.014 0.036 A 0.363 0.621
T 0.007 0.020 T 0.256 0.290

East-West combined
A: (60, 70, 80, 30, 30, 130)
B: (60, 60, 90, 10, 60, 120)

A B
66.67 66.67
0.275 0.267
0.125 0.198
0.236 0.469
0.126 0.149

—“-2>>ox

Two lessons can be drawn from this little experiment. First, some inequal-
ity measures are just not decomposable, in that it is possible for them to
register an increase in inequality in every subgroup of the population at
the same time as a decrease in inequality overall: if this happens then it
is obviously impossible to express the overall inequality change as some
consistent function of inequality change in the component subgroups. The
Gini coefficient is a prime example of this; other measures which behave in
this apparently perverse fashion are the logarithmic variance, the variance of
logarithms, and the relative mean deviation. The second lesson to be drawn
is that, because decomposability is essentially about consistency in inequal-
ity rankings in the small and in the large, if a particular inequality measure
is decomposable then so too is any ordinally equivalent transformation of
the measure: for example it can readily be checked that the variance V is
decomposable, and so is the coefficient of variation ¢ which is just the square
root of V.

There is a powerful result that clarifies which inequality measures will sat-
isty decomposability along with the other properties that we have discussed
so far:

Theorem 5 Any inequality measure that simultaneously satisfies the properties
of the weak principle of transfers, decomposability, scale independence, and the
population principle must be expressible either in the form
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Ey= =N <l R
! 02—0['1;[? ]

or as ] (Ep), some ordinally-equivalent transformation of Eg, where 0 is a real
parameter that may be given any value, positive, zero, or negative.

I have used the symbol ‘E’ to denote this family of measures, since they
have become known in the literature as the generalized entropy measures.
A quick comparison of this formula with that of the modified informa-
tion theoretic measures (defined on page 58) shows that the two are very
closely related: in fact the generalized entropy measures are just the modified
information theoretic family again, now normalized so that they satisfy the
population principle, and with the parameter 6 set equal to 8 — 1.1 In view
of this ‘family connection’ it is clear that the generalized entropy measures
have other connections too: inspection of the generalized entropy formula
reveals that the case 6 =2 yields an index that is cardinally equivalent
to the Herfindahl index H (and hence ordinally equivalent to V and c);
putting 6 =1 — ¢ in the formula we can see that—for values of § < 1—the
measures are ordinally equivalent to the welfare-theoretic indices A, and D,
for distributions with a given mean.

As with our discussion of welfare-based and information-theory-based
measures we now have a collection or family of inequality measures that
incorporates a set of principles for ranking income distributions. And, as we
have just seen, there are close connections between all the indices derived
from three approaches. Let us see if we can narrow things down a bit
turther.

3.5 Choosing an inequality measure

Now that we have seen three approaches to a coherent and comprehensive
analysis of inequality, how should we go about selecting an appropriate
inequality measurement tool? For a start let us clarify the nature of the
choice that we are to make. We need to make the important distinction
between choosing a family of inequality measures and choosing a particular
member from the family. This sort of distinction would apply to the selection
of mathematical functions in other contexts. For example, if we were deco-
rating a piece of paper and wanted to decide on a particular curve or shape

19 In the first edition (1977) the modified information theoretic measure was denoted I; and
extensively discussed. Since that time the literature has more frequently used the normalization

of the generalized entropy family given here as E,. Formally one has E; =1, =T, if =1 (8=0),
and Ey = Iﬂ_lnﬁ*1 for other values of 6.

67



Measuring Inequality

to use in the pattern, we might consider first the broader choice between
families of curves or shapes—squares, circles, triangles, ellipses, etc.—and
then having decided upon ellipses for the design, perhaps we would want
to be more specific and pick a particular size and shape of ellipse. Some of
the broad principles that we have considered under ‘building an inequality
measure’ are rather like the questions at the level of the ‘squares, circles, or
ellipses?’ stage of designing the decorative pattern. Let us see what guidance
we now have in choosing a family of inequality measures.

The first four of the basic properties of inequality measures that we listed
earlier—the weak transfer principle, scale independence, the population
principle, and decomposability—would probably command wide, although
not universal, support. As we have seen they define an extended family
of measures: the generalized entropy family and all the measures that are
ordinally equivalent to it. It may be worth trying to narrow this selection of
measures a bit further, and to do this we should discuss the fifth on the list
of the basic principles.

Strong Principle of Transfers

Let us recall the concept of ‘distance’ between people’s income shares,
introduced on page 57, to strengthen the principle of transfers. Consider
a distance measure given by

d = h(s1) — h(s2),

where s, is greater than s;, and h(s) is one of the curves in Fig. 3.8. Then
consider a transfer from rich person 2 to poor person 1. We say that the
inequality measure satisfies the principle of transfers in the strong sense if
the amount of the reduction in inequality depends only on d, the distance,
no matter which two individuals we choose.

For the kind of h-function illustrated in Fig. 3.8, the inequality measures
that satisfy this strong principle of transfers belong to the family described by
formulas for the modified information theoretic family (of which the Theil
index and the Herfindahl index are special cases) or the generalized entropy
tamily which, as we have just seen, is virtually equivalent. Each value of p—
equivalently each value of f—defines a different concept of distance, and
thus a different associated inequality measure satisfying the strong principle
of transfers.

In effect we have found an important corollary to Theorem 5. Adding the
strong principle of transfers to the other criteria means that Theorem 5 can
be strengthened a bit: if all five properties listed above are to be satisfied
then the only measures which will do the job are the generalized entropy
indices Ej.
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Why should we want to strengthen the principle of transfers in this way?
One obvious reason is that merely requiring that a measure satisfy the weak
principle gives us so much latitude that we cannot even find a method of
ranking all possible income distributions in an unambiguous order. This is
because, as Theorem 4 shows, the weak principle amounts to a requirement
that the measure should rank income distributions in the same fashion as
the associated Lorenz curves—no more, no less. Now, the strong principle
of transfers by itself does not give this guidance, but it points the way to an
intuitively appealing method. Several writers have noted that an inequality
measure incorporates some sort of average of income differences. The ‘dis-
tance’ concept, d, allows one to formalize this. For, given a particular d, one
may derive a particular inequality measure by using the strong principle as
a fundamental axiom.!! This measure takes the form of the average distance
between each person’s actual income and the income he would receive in
a perfectly equal society, and is closely related to E4.!? The advantage of
this is that instead of postulating the existence of a social welfare function,
discussing its desired properties, and then deriving the measure, one may
discuss the basic idea of distance between income shares and then derive the
inequality measure directly.

Most of the ad hoc inequality measures do not satisfy the strong principle
of transfers as they stand, although some are ordinally equivalent to mea-
sures satisfying this axiom. In such cases, the size of a change in inequality
due to an income transfer depends not only on the distance between the
shares of the persons concerned, but on the measured value of overall
inequality as well. It is interesting to note the distance concept implied by
these measures. Implicit in the use of the variance and the coefficient of
variation (which are ordinally equivalent to H) is the notion that distance
equals the absolute difference between income shares. The relative mean
deviation implies a very odd notion of distance—zero if both persons are
on the same side of the mean, and one if they are on opposite sides. This
property can be deduced from the effect of the particular redistribution
illustrated in Fig. 2.6. The measures v, v;, and G are not even ordinally
equivalent to a measure satisfying the strong principle. In the case of v and
v; this is because they do not satisfy the weak principle either; the reason for
G’s failure is more subtle. Here the size of the change in inequality arising
from a redistribution between two people depends on their relative position
in the Parade, not on the absolute size of their incomes or their income
shares. Hence a redistribution from the 4th to the 5th person (arranged

11 For the other axioms required see Cowell and Kuga (1981) and the discussion on page 186
which gives an overview of the development of this literature.

12 This is clear from the second of the three ways in which the information theoretic measure
was written down on page 58.
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in Parade order) has the same effect as a transfer from the 1,000,004th to
the 1,000,005th, whatever their respective incomes. So distance cannot be
defined in terms of the individual income shares alone.

A further reason for recommending the strong principle lies in the cardinal
properties of inequality measures. In much of the literature attention is
focused on ordinal properties, and rightly so. However, sometimes this has
meant that because any transformation of an inequality measure leaves its
ordering properties unchanged, cardinal characteristics have been neglected
or rather arbitrarily specified. For example, it is sometimes recommended
that the inequality measure should be normalized so that it always lies
between zero and one. To use this as a recommendation for a particular
ordinally equivalent variant of the inequality measure is dubious for three
reasons.

1. It is not clear that a finite maximum value of inequality, independent
of the number in the population, is desirable.

2. There are many ways of transforming the measure such that it lies in the
zero-to-one range, each such transformation having different cardinal
properties.

3. And, in particular, where the untransformed measure has a finite maxi-
mum, the measure can easily be normalized without altering its cardinal
properties, simply by dividing by that maximum value.!3

However, because measures satisfying the strong principle of transfers
can be written down as the sum of a function of each income share, they
have attractive cardinal properties when one considers either the problem
of decomposing inequality by population subgroups (as in the East-West
example discussed above), or of quantifying changes in measured inequality.
The family Ey, all members of which satisfy the strong principle, may be
written in such a way that changes in inequality overall can easily be related
to (a) changes in inequality within given subgroups of the population, and
(b) changes in the income shares enjoyed by these subgroups, and hence
the inequality between the groups. The way to do this is explained in the
Technical Appendix, from which it is clear that a measure such as A, though
formally ordinally equivalent to I; for many values of £, does not decompose
nearly so easily. These cardinal properties are, of course, very important
when considering empirical applications, as we do in Chapter 5.

Now let us consider the second aspect of choice: the problem of selecting
from among a family of measures one particular index. As we have seen,
many, though not all, of the inequality measures that are likely to be of

13 This assumes that the minimum value is zero; but the required normalization is easy
whatever the minimum value.
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interest will be ordinally equivalent to the generalized entropy class: this
applies, for example, to inequality measures that arise naturally from the
SWF method (for example we know that all the measures A, are ordinally
equivalent to Ey, for = 1 — & where & > 0). Let us then take the generalized
entropy family of measures!*—extended to include all the measures that are
ordinally equivalent—as the selected family and examine the issues involved
in picking one index from the family.

If we are principally concerned with the ordering property of the measures,
then the key decision is the sensitivity of the inequality index to information
about different parts of the distribution. We have already seen this issue in
our discussion on page 60 of whether the distance between Rich R and quite-
well-off Q was greater than the distance between Q and poor P. Different dis-
tance concepts will give different answers to this issue. The distance concept
can be expressed in terms of the value of the parameter B, or equivalently
in terms of the generalized entropy parameter ¢ (remember that 6 is just
equal to 1+ p). In some respects we can also express this sensitivity in terms
of the SWF inequality-aversion parameter € since, in the region where it
is defined, €=1 — 6 (which in turn equals —p). We have already seen on
page 44 how specification of the parameter € implies a particular willingness
to trade income loss from the leaky bucket against further equalization of
income; this choice of parameter ¢ also determines how the ‘tie’ will be
broken in cases where two Lorenz curves intersect—the problem mentioned
in Chapter 2.

To illustrate this point, consider the question of whether or not the
Switzerland of 1982 was ‘really’ more unequal than the USA of 1979, using
the data in Fig. 3.9.1% As we can see from the legend in the figure, the
Gini coefficient is about the same for the distributions of the two countries,
but the Lorenz curves intersect: the share of the bottom ten per cent in
Switzerland is higher than the USA, but so too is the share of the top ten
per cent. Because of this property we find that the SWF-based index A, will
rank Switzerland as more unequal than the USA for low values of inequality
aversion &—see the left-hand end of Fig. 3.10—and will rank the USA as
more unequal for high values of € (where the SWF and its associated distance
concept are more sensitive to the bottom of the distribution).

The value of ¢ or 6 that is chosen depends on two things:

 our intrinsic aversion to inequality;

¢ the discriminatory power of the resulting inequality measure.
14 Although we could have constructed reasonable arguments for other sets of axioms that
would have picked out a different class of inequality measures—see the Technical Appendix for

a further discussion.
15 Source: Bishop et al. (1991) based on LIS data.
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F1G. 3.9. Lorenz curves for equivalized disposable income per person: Switzerland
and USA

Of course the first point is just a restatement of our earlier discussion
relating & to our willingness to sacrifice overall income in order to pursue
an egalitarian redistribution; a practical example occurs in Chapter 5. The
detail of the second point has to be deferred to Chapter 5; however, the main
point is that if very high inequality aversion is specified, nearly all income
distributions that are encountered will register high measured inequality,
so that it becomes difficult to say whether one state is more unequal than
another.

3.6 Summary

The upshot of the argument of Chapters 2 and 3 is as follows. If we are
interested in dealing with any and every possible income distribution, it
may be reasonable to require that a property such as the weak principle of
transfers should be satisfied. In choosing a measure that conforms to this
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Source: as for Fig. 3.9

principle it is useful to have one that may either be related to an inequality-
aversion parameter (such as A or D) or to a concept of distance between
income shares (the information theoretic measures or the family Ey). In
order to do this we need to introduce some further assumptions about the
measurement tool—such as the decomposability property—which may be
more contentious.

Even if these assumptions about building an inequality measure are
accepted, this still leaves the question of various cardinal characteristics
open. Invariance with respect to proportional changes in all incomes or
with respect to increases in the population may be desirable under certain
circumstances. Standardization of the measure in a given range (such as 0
to 1) has only a superficial attractiveness to recommend it: it may be well
worthwhile sacrificing this in order to put the measure in a cardinal form
more useful for analysing the composition of, and changes in, inequality.
The way these conclusions relate to the measures we have mentioned is
summarized in Table 3.5.

However, these remarks apply to comparisons of all conceivable distri-
butions. You may wonder whether our task could be made easier if our
attention were restricted to those distributions that are, in some sense, more
likely to arise. The next chapter attempts to deal with this issue.
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Table 3.5. Which measure does what?

Index Principle of Distance concept Decomposable? Independent of Range in
transfers income scale & interval [0,1] ?
population size?
Variance, V strong Absolute differences Yes No: increases No
with income
Coeff. of variation, ¢ weak As for variance Yes Yes No
Relative mean just 0, if incomes on same No Yes No:
deviation, M fails side of ¥, or 1 otherwise in [0,2]

Logarithmic variance, v fails Differences in (log-income) No Yes No
Variance of logarithms, vy fails As for logarithmic variance No Yes No

Equal shares just As for relative mean No Yes Yes
coefficient fails deviation

Minimal just Similar to M (critical No Yes Yes

majority fails income is yp, not y)

Gini, G weak Depends on rank ordering No Yes Yes
Atkinson’s index, A, weak Difference in marginal social utilities Yes Yes Yes
Dalton’s index, D, weak As for Atkinson’s index Yes No No
Theil’s entropy index, T strong Proportional Yes Yes No

MLD index, L strong Difference between reciprocal of incomes Yes Yes No
Herfindahl’s index, H strong As for variance Yes No: decreases Yes: but

with population min > 0

Generalized entropy, £ strong Power function Yes Yes No

Note: ‘just fails" means a rich-to-poor transfer may leave inequality unchanged rather than reducing it.
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3.7 Questions

1. Show that the inequality aversion parameter € is the elasticity of social

marginal utility defined on page 41.

2. (@) Use the UK 1984/5 data (see file ‘ET income distribution’ on the
website) to compute Atkinson'’s inequality index with € = 2, making
the same assumptions as in Question 5 of Chapter 2.

(b) Recompute the index in part (a) after dropping the first income class
from the dataset. Why does measured inequality decrease?

(c) Rework the calculations in (b) for a variety of values of € so as to
verify that measured inequality rises with inequality aversion for a
given dataset.

3. Suppose that the assumption of constant relative inequality aversion

(page 41) were to be replaced by the assumption of constant absolute
inequality aversion, whereby the U-function may be written

1
) = — _p KV
Uy Ke .

(a) Sketch the U-function for different values of «.

(b) Write down the corresponding social welfare function, and hence
find an expression for the equally-distributed equivalent income.

(c) Explain what happens to social welfare as y; goes to zero. Is the social
welfare function defined for negative incomes?

4. Consider the following two distributions of income:

A:(1,4,7,10,13),
B:(1,5,6,10,13).

Which of these appears to be more unequal? Many people when
confronted with this question will choose B rather than A. Which
fundamental principle does this response violate? (See Amiel and
Cowell 1999.)

5. Gastwirth (1974b) proposed the following as an inequality measure-
ment tool:

1 s -yl
nzizﬂ:iz:l: Vityi

What concept of distance between incomes does it employ? In what
way does it differ from the Gini coefficient? For the two distributions (1,
2,97) and (1, 3, 96) verify that it violates the transfer principle: would
it also violate the transfer principle for the distributions (2, 2, 96) and
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(1, 3, 96)? (See also Amiel and Cowell 1998 and Nygard and Sandstrém
1981, p. 264.)

6. Show that the Parade of Dwarfs for a distribution A must lie above that
for distribution B if and only if the generalized Lorenz curve of A is
steeper than the generalized Lorenz curve of B. (See Thistle 1989b.)
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Modelling Inequality

‘I distrust all systematisers and avoid them. The will to a system shows a
lack of honesty.’

F. W. Nietzsche, Maxims and Missiles

Up till now we have treated information about individual incomes as an
arbitrary collection of nuts and bolts which can be put together in the
form of an inequality statistic or a graph without any preconception of the
general pattern which the distribution ought to take. Any and every logically
possible distribution can be encompassed within this analysis, even though
we might think it unlikely that we should ever meet any actual situation
approximating some of the more abstruse examples. By contrast we might
want instead to have a simplified model of the way that the distribution
looks. Notice that I am not talking about a model of the causes of inequality,
although that would be interesting too and might well make use of the sort
of models we are going to be handling here. Rather, we are going to examine
some important special cases that will enable us to get an easier grip upon
particular features of the income distribution. This entails meeting some
more specialized jargon, and so it is probably a good idea at the outset to
consider in general terms why it is worthwhile becoming acquainted with
this new terminology.

The special cases which we shall examine consist of situations in which
it is convenient or reasonable to make use of a mathematical formula that
approximates the distribution in which we are interested. The inconvenience
of having to acquaint yourself with a specific formulation is usually compen-
sated for by a simplification of the problem of comparing distributions in
different populations, or of examining the evolution of a distribution over
time. The approach can be extremely useful in a variety of applications. You
can use it to represent particular parts of the income distribution where a
distinctive regularity of form is observed; it can also be used for filling in gaps
of information where a dataset is coarse or incomplete (we will be doing just
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that in Chapter 5); and, as I have mentioned, this technique is often used
as a device to characterize the solution to economic models of the income
distribution process.

4.1 The idea of a model

At the outset it is necessary to understand the concept of a functional form.
Typically this is a mathematical formula which defines the distribution
function (or the density function, depending on the particular presentation)
of not just a single distribution, but of a whole family of such distributions.
Each family member has common characteristics and can usually be simply
identified within the family by fixing certain numbers known as parameters.
This can be clarified by an easy example that may be very familiar. Consider
the family of all the straight lines that can be drawn on a simple plane
diagram. The usual equation that gives the graph of the straight line is:

y=mx+c,

where y is distance in the ‘vertical’ direction and x is distance in the ‘hor-
izontal’ direction. Since this formula defines any straight line in the plane,
it can be considered as a general description of the whole family—i.e. as the
functional form referred to above. The numbers m and c are, in this case,
the parameters. Fix them and you fix a particular straight line as a family
member. For example, if you set m=1 and ¢ = 2 you get a line with slope 1
(or, a 45° line) that has an intercept on the y-axis at y = 2.

When we are dealing with functional forms that are useful in the analy-
sis of inequality, however, we are not of course immediately interested in
straight lines, but rather in curves which will look like Figs 2.2 or 2.3. In this
case our parameters usually fix things such as the location of the distribution
(for example, if one of the parameters is the arithmetic mean) and the
dispersion of the distribution (for example, if one of the parameters is the
variance).

Now perhaps it is possible to see the advantage of adopting a particular
functional form. Let us suppose that you have discovered a formula that fits
a particular distribution superbly. We will write down the density function
of your fitted formula thus:

f=4¢(y;a,b).

The notation ¢(.;.,.) simply stands for some expression the details of which
we have not troubled to specify; a and b are the parameters. This equation
gives you the height f of the smooth curve in the frequency distribution
(Fig. 2.2) for any value of income y. Obviously a and b have particular
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numerical values which give a close fit to the distribution you are examining.
However, the empirical distribution that you are considering may be of a
very common shape, and it may so happen that your formula will also do
for the distribution of income in another population. Then all you have to
do is to specify new values of a and b in order to fix a new member of the
¢-family.

So you could go on using your formula again and again for different
distributions (always assuming it was a good approximation of course!), each
time merely having to reset the two numbers a and b. Let us suppose that
the problem in hand is the comparison of the distribution of income in a
particular country now with what it was ten years ago, and that it turns
out that in each case the ¢-formula you have discovered very closely fits
the observed shape. The comparison is really very easy because you do not
have to describe the whole distribution, but you can neatly summarize the
whole change by noting the change in the two numbers a and b. No more
is required because in specifying a and b you have thus described the whole
curve, in the same way that ‘slope’ and ‘intercept’ completely describe an
entire straight line.

Because this approach is so convenient it is appropriate to put in some
words of warning before going any further. Although this chapter only
discusses two functional forms in detail, a great many others have been
employed in the social sciences. The properties of some of these are described
in the Technical Appendix. However, any such formula is only a conve-
nience. It may turn out that it describes some distributions extremely well,
but this should not lull us into expecting it to perform miracles in every
situation. Most often we find that such a functional form characterizes
certain sections of a distribution. In this case we need to be very aware of
its limitations in the less convenient parts—frequently these are the ‘lower
tail’ of the distribution. It is usually only fortuitous that a very simple
formula turns out to be a highly satisfactory description of the facts in
every respect. Finally, in the analysis of economic inequality it is often the
case that a simple theoretical caricature of the income- or wealth-generating
process leads one to anticipate in theory that a particular functional form
of the income or wealth distribution may be realized. Such a conclusion, of
course, can only be as sound as the assumptions of the model underlying it.
Therefore one is well advised to be suspicious about ‘laws’ of distribution
in the sense of claiming that a particular formulation is the one that is
somehow metaphysically ‘correct’. In doing so it may be possible to view
such formulations in what I believe is the correct perspective: as useful
approximations that enable us to describe a lot about different distributions
with a minimum of effort.
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4.2 The lognormal distribution

In order to grasp the reason for using this apparently unusual distribution
with a complicated density function (the mathematical specification is given
in the Technical Appendix) it is helpful to come to an understanding of its
historical and logical origin. This requires a preliminary consideration of the
normal distribution.

The normal distribution itself is of fundamental importance in a vast area
of applied statistics, and for an appreciation of its origin and significance
reference should be made to sources cited in the notes to this chapter. For our
present purposes let us note that since ‘the normal curve was, in fact, to the
early statisticians what the circle was to the Ptolemaic astronomers’ (Yule and
Kendall 1950) it is not surprising that scholars have been eager to press it into
service in the field of economics and elsewhere. If examination marks, men’s
height, and errors in experimental observation! were supposed to have the
normal distribution, then why not look for a ‘normal law’ governing the
distribution of observed quantities in the social sciences?

The term ‘normal distribution’ describes one family of possible frequency
curves, two typical members of which are illustrated in Fig. 4.1. As you
can see, the curves are symmetrical about the vertical line through A; point
A marks the value u which is the arithmetic mean of the variable x whose
distribution is described by curve (1). This is also the mean of a variable
with the distribution of curve (2), which by construction has been drawn
with the same mid-value. If curve (2) had a higher mean then it would be
displaced bodily to the right of its present position. The higher the variance
of the distribution, ¢?, the more ‘spread out’ will this curve be—compare
the values of ¢? for the two curves. The two numbers w,0? are the curves’
parameters and so completely identify a particular member of the family of
normal distributions. If a particular variable x (such as height in a sample of
adult males) has the normal distribution with mean w and variance o2, we
say that x is distributed N(x; u, 62).

Now it is evident that the distribution of economic quantities such as
income do not fit the normal curve (although there are some latter day
Ptolemaians who would like to assure us that they ‘really’ do—see, for
example, Lebergott (1959)). As we have seen in Chapter 2, typical income
distributions are positively skewed, with a heavy right-hand tail—this is even

! It has now been long recognized that the distributions of many such observed characteristics
only rarely approximate very closely to the normal distribution. This in no way diminishes the
importance of the normal in sampling theory, nor in understanding the historical origin of much
of the thought concerning the distribution of incomes.
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F1G. 4.1. The normal distribution

more noticeable in the case of the distribution of wealth. Is there a simple
theoretical distribution that captures this feature?

The lognormal distribution has been suggested as such a candidate, and
may be explained in the following manner. Suppose we are considering the
distribution of a variable y (income) and we find that the logarithm of y has
the normal distribution, then y is said to be lognormally distributed. So we
transform all our y-values to x-values thus:

x =log(y)

(the shape of the curve that describes the relation is given by the & = 1 curve
in Fig. 3.1), we will find that it has the normal distribution like the curves
in Fig. 4.1. But what does the distribution of the untransformed variable
y itself look like? Two representative members of the lognormal family are
illustrated in Fig. 4.2. Notice that, unlike the normal distribution, it is not
defined for negative values of the variable y. The reason for this is that as
x (the logarithm of y) becomes large and negative, y itself approaches its
minimum value of zero, and there is no real number x representing the
logarithm of a negative number.

However, the perceptive reader may by now be asking, why choose a loga-
rithmic transformation to produce a distribution of the ‘right’ shape? There
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FI1G. 4.2. The lognormal distribution

are four reasons. First, the lognormal distribution has a lot of convenient
properties, some of which are explained below. Second, it can be shown
that under certain kinds of ‘random processes’ the distribution of incomes
eventually turns out to be approximately lognormal. The idea here, roughly
speaking, is that changes in people’s incomes can be likened to a systematic
process whereby, in each moment of time, a person’s income increases or
decreases by a certain proportion, the exact proportionate increase being
determined by chance. If the distribution of these proportionate increments
or decrements follows the normal law, then in many cases the overall
distribution of income approaches lognormality, provided that you allow
enough time for the process to operate.? Third, there is still some residual
notion of ‘individual utility’ or ‘social welfare’ associated with the logarithm
of income; it would be nice to claim that although incomes do not follow
the normal distribution, ‘utility’ or ‘welfare’ do. This will not do, however,
for as we have seen in Chapter 3, even if we do introduce a social welfare
function, log(y) is just one among many candidate ‘welfare indices’. Fourth,
the lognormal provides a reasonable sort of fit to many actual sets of data.
This I shall consider later.

2 Of course, other technical assumptions are required to ensure convergence to the lognormal.
In some cases the resulting distribution is similar to, but not exactly equivalent to, the lognormal.
This kind of process is also useful in analysing the inequality in the size distribution of firms.
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Simple relationship to the normal
Symmetrical Lorenz curves
Non-intersecting Lorenz curves
Easy interpretation of parameters

Preservation under loglinear transformations

THE LOGNORMAL—SPECIAL ATTRACTIONS

Our first reason for using the logarithmic transformation of the normal
distribution was, unashamedly, the convenient properties which the result-
ing distribution possessed. These are now displayed a little more boldly in
the accompanying box. Let us look more closely at the ‘small print’ behind
these claims.

The first point, on the relationship with the normal curve, we have already
examined in detail. However, it is worth noting that this simple transforma-
tion enables the student very easily to obtain the cumulative frequency F(y)
corresponding to an income y (the proportion of the population with an
income no greater than y):

* find the logarithm of y, say x, from your scientific calculator or a stan-
dard computer program;

* ‘standardize’ this number using the two parameters to calculate z = XT“ ;
e obtain F(z) from a standard computer program—or look it up in tables

of the standard normal distribution.

A further advantage of this close relationship is that a number of common
statistical tests which rely on the assumption of normality can be applied
straightaway to the logarithm of income, given the lognormal assumption.

The second feature is illustrated in Fig. 4.3: the Lorenz curves are sym-
metric about the line CQ, where Q is the point on the typical Lorenz curve
at which y attains its mean value. This is a little more than a theoretical
curiosity since it enables one to see quickly whether there is a prima facie
case for using the lognormal as an approximation to some given set of data.
If the plotted Lorenz curve does not look symmetrical, then it is not very
likely that the lognormality assumption will turn out to be satistactory. The
third feature, non-intersecting Lorenz curves, can also be seen in Fig. 4.3.3
The important conclusion to be derived from this observation is this: given
any two members of the lognormal family of distributions, one will unambiguously

3 Please note that this does not follow from the second property. Two arbitrary Lorenz curves,
each of which is symmetric, may of course intersect.
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F1G. 4.3. The Lorenz curve for the lognormal distribution

exhibit greater inequality than the other. This remark is to be understood in the
sense of comparing the inequality exhibited by the two income distributions
using any mean-independent inequality measure that satisfies the weak
principle of transfers. It is a direct consequence of Theorem 2, and it is an
observation which leads us naturally on to the next feature.

The fourth feature is well-documented. Since there is a simple link with
the normal, we may expect a simple link between the parameters w,o? of
the lognormal distribution, written A(y; u, 0?), and the normal distribution.
It is evident by definition that w is the mean of the logarithm of y (or,
putting the same point another way, u is the logarithm of the geometric
mean of the values of y). It also happens that u is the logarithm of the
median of y—so that 50 per cent of the distribution lies to the left of the
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FIG. 4.4. Inequality and the lognormal parameter o2

value y = e#—see the shaded area in Fig. 4.2. Again by definition we see that
o? is the variance of the logarithm of y; this is the inequality measure we
denoted by v; in Chapter 2. As we noted in the last paragraph, if we are
comparing members of the two-parameter lognormal family, we never have
the problem of intersecting Lorenz curves.* Furthermore, since any Lorenz
curve is defined independently of the mean, it can be shown that the family
of Lorenz curves corresponding to the family of lognormal distributions
is independent of the parameter u. Thus each lognormal Lorenz curve is
uniquely labelled by the parameter ¢2. So ¢ (or ¢?) itself is a satisfactory
inequality measure, provided that we restrict our attention to the lognormal
family. Of course, if we go outside the family we may encounter the problems
noted on page 29.

However, although ¢ or ¢ may perform the task of ordinally ranking
lognormal curves perfectly well, we may not be attracted by its cardinal
properties. Just because the variance of logarithms, ¢?, is a convenient para-
meter of the lognormal distribution we do not have to use it as an inequality
measure. Fortunately, it is very easy to express other inequality measures as
simple functions of ¢, and a table giving the formula for these is to be found
in the Technical Appendix. Some of those which were discussed in the last
two chapters are sketched against the corresponding values of ¢2 in Fig. 4.4.
Thus to find, say, the value of the Gini coefficient in a population with the
lognormal distribution, locate the relevant value of ¢? on the horizontal
axis, and then read off the corresponding value of the inequality measure on
the vertical axis from the curve marked Gini.

4 The problem can arise if one considers more complicated versions of the lognormal curve,
such as the three-parameter variant, or if one examines observations from a lognormal popula-
tion that has been truncated or censored. Consideration of these points is an unnecessary detour
in our argument, but you can find out more about this in Aitchison and Brown (1957).
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The final point may seem a little mystifying, though it can be useful. It
follows from a well-known property of the normal distribution: if a variable
x is distributed N(x; u, 0?), then the simple transformation z=a+bx has
the distribution N(z a + bu, b*¢?). So the transformed variable also has the
normal distribution, but with mean and variance altered as shown.

Let us see how this applies to the lognormal distribution. Now we know
that a variable y has the lognormal distribution A(y; u, 6®) if its logarithm
x =log(y) has the normal distribution N(x; u, 62). Suppose we consider any
two numbers A, b with the only restriction that A be positive, and write
the natural logarithm of A as a. Use these two numbers to transform y into
another variable w thus:

w = Ay”,
so that by the usual rule of taking logarithms we have
log(w) = a + blog(y).

Denote log(w) by z and recall the definition that we made above of x = log(y).
Then the last equation can be more simply written

Z=da+ bx.

But we know (from above) that because x is distributed N(x; u, 62), z is dis-
tributed N(z a + bu, b*¢?). In other words, the logarithm of w has the normal
distribution with mean a + by, and variance b?¢®. By definition of the log-
normal, therefore, w itself has the lognormal distribution A(w; a + bu, b2 c?).

To summarize: if y is distributed A(x; u, 6%), then the transformed variable
w = Ay has the distribution A(w; a + bu, b*>6?). One of the useful applications
of this property is as follows. It has been observed that some countrys’
personal tax schedules are approximated reasonably by the formula

t=y— Ay,
where t is individual tax liability and y is income.® Then disposable income
is given by

w = AyP.
So if the distribution of pre-tax income is approximately lognormal, the
distribution of after tax income is also approximately lognormal.
S A tax function with this property has been called a ‘constant residual progression’ tax
function after the terminology used by Musgrave and Thin (1948). The parameter b lies between

0 and 1; the smaller is b, the more progressive is the tax schedule; and the smaller is the inequality
in the resulting distribution of disposable income.
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We will find some very similar properties when we turn to our second
special case.

4.3 The Pareto distribution

Although the Pareto formulation has proved to be extremely versatile in
the social sciences, in my view the purpose for which it was originally
employed is still its most useful application—an approximate description of
the distribution of incomes and wealth among the rich and the moderately
rich.

Take another look at the frequency distribution of incomes that we first
met on page 20. If you cover up the left-hand end of Fig. 2.2 (below about
£4,000) you will see that the rest of the underlying curve looks as though it
should fit neatly into a simple functional form. Specifically it looks as though
this portion of the curve could well be defined by a power function of the
form:

f(y)=kiy™,

where k; and k, are constants. With this little exercise you have virtually
rediscovered an important discovery by Vilfredo Pareto. In the course of
the examination of the upper tails of the income distributions in a number
of countries, Pareto found a remarkably close fit to the particular func-
tional form I have just introduced—although in Pareto’s standard version
the two parameters are specified in a slightly different way from k; and
k2, as we shall see below. Since the functional form ‘worked’ not only for
the then current (late nineteenth century) data, but also for earlier peri-
ods (as far back as the worthy citizens of Augsburg in 1471), this happy
empirical circumstance assumed the status of a Law. Furthermore, since
the value of the crucial parameter (now customarily referred to as ‘a’)
seemed to lie within a fairly narrow range, it seemed to Pareto that a might
receive the kind of dignification accorded to the gravitational constant in
physics.

Unfortunately, I must remind you of the iconoclastic remarks about ‘laws’
made earlier in this chapter. Although the Paretian functional form provides
a good fit for parts of many income or wealth distributions (as well as an
abundance of other engaging applications such as the size distribution of
cities, the frequency of contribution by authors to learned journals, the
frequency of words in the Nootka and Plains Cree languages, the distrib-
ution of the length of intervals between repetitions of notes in Mozart’s
Bassoon Concerto in Bb Major, and the ranking of the billiards scores by
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faculty members of Indiana University), the reputation accorded to it by
earlier and more naive interpretations has become somewhat tarnished.
Neither Davis’ mathematical interpretation of history, nor Bernadelli’s pos-
tulate of the futility of revolutions is comfortably supported by the facts on
income distribution.® But although the more simplistic hopes (centring on
the supposed constancy of Pareto’s a) may have been dashed, the under-
lying distribution remains of fundamental importance for the following
reasons.

In the first place, although Pareto’s a is not a gravitational constant, as I
have pointed out, the functional form still works well for a number of sets
of data. Second, the distribution may once again be shown to be related
to a simple ‘random process’ theory of individual income development.
The principle is very similar to the process referred to on page 82, the
main difference being that a device is introduced to prevent an indefinite
increase in dispersion over time, which has the effect of erecting a ‘lower
barrier’ income y below which no one can fall. Third, the Paretian form
can be shown to result from simple hypotheses about the formation of
individual remuneration within bureaucratic organizations. The idea here
is quite simple: given that a hierarchical salary structure exists and that
there is a fairly stable relationship between the remuneration of overlord
and underling, the resulting frequency distribution of incomes is Paretian.
Fourth, the functional form of the Pareto distribution has some remarkably
convenient properties in its own right which make it useful for a description
of distributional problems and for some technical manipulations, which
I discuss in the next chapter.

In order to understand the especially attractive feature of the Pareto dis-
tribution you will find it helpful to construct a fresh diagram to present the
income distribution data. This will be based on the same facts as were Figs 2.1
to 2.5, but will set out the information in a different manner.

* Along the horizontal axis put income on a logarithmic scale.’

e For any income level y transform the cumulative income proportions
F(y) by calculating the number P =1 — F(y).

* Then plot P on the vertical axis also using a logarithmic scale.

What we have done is to plot the proportion of the population with y or
more against y itself on a double-logarithmic diagram.

Let us see what the resulting curve must look like. If we look at a low
level of income, then the corresponding value of F (y) will be low since there

6 Curious readers are invited to check the notes to this chapter for details.
7 This is a scale similar to that used in Fig. 2.5.
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P=1-F(y)
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F1G. 4.5. The Pareto diagram
Source: as for Fig. 2.1

will only be a small proportion of the population with that income or less.
By the same token the corresponding value of P must be relatively high
(close to its maximum value of 1.0). If we look at a much higher level of
y. F(y) will be higher (the proportion of the population with that income
or less will have risen) and, of course, the number P will be smaller (the
proportion of the population with that income or more must have fallen).
As we consider larger and larger values of y, the number P dwindles away
to its minimum value, zero. Since P is being plotted on a logarithmic scale
(and the logarithm of zero is minus infinity) this means that the right-hand
end of the curve must go right off the bottom edge of the page. The result is
a picture like that of Fig. 4.5. Notice that part of this curve looks as though
it may be satisfactorily approximated by a straight line with slope of about
—21. This gives us the clue to the Pareto distribution.

If the graph we have just drawn turns out to be exactly a straight line
throughout its length, then the underlying distribution is known as the
Pareto distribution. The slope of the line (taken positively) is one of the
parameters of the distribution, usually denoted by a. The income corre-
sponding to the intercept of the line on the horizontal axis gives the other
parameter; write this as y. Two examples of the Pareto family, each with
the same y, but with different values of a are illustrated in Fig. 4.6. The
corresponding frequency distributions are drawn in Fig. 4.7. It is apparent
from a superficial comparison of this picture with Fig. 2.2 or other frequency
distributions based on different datasets that, for income distributions at
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FIG. 4.7. Paretian frequency distribution
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least, the Paretian functional form is not likely to be a very good fit in the
lower and middle income classes but may work pretty well in the upper
ranges, as suggested at the beginning of the section. We shall consider this
question of fit further below.

Linearity of the Pareto diagram
Van der Wijk’s law
Non-intersecting Lorenz curves
Easy interpretation of parameters

Preservation under loglinear transformations

PARETO—SPECIAL ATTRACTIONS

Let us, then, take a look at some of the special attractions of the Pareto
distribution, as advertised, in the accompanying box. Once again we ought
to look at the facts behind these assertions.

One particular advantage of the first feature—the simple shape of the
Pareto diagram—is that it is easy to work out the distribution function F (y),
to calculate the proportion of the population that has y or less. To do this,
divide y by the required income level y; raise the resulting number to the
power a; subtract this result from 1.

On the second point, we find van der Wijk’s name attached to a partic-
ularly simple law which holds only for the Pareto distribution.® Take any
income level y as a ‘base’ income. Then the average income of the subgroup
who have an income at least as great as this base income is simply By, where

a

a—1"

So there is a simple proportionality relationship between this average and
the base income level, whatever the chosen value of chosen base income.
The constant of proportionality B can itself be seen as a simple inequality
measure: ‘the average/base’ index. Notice that if a increases then B falls:
the gap between your own income and the average income of everyone else
above you necessarily gets smaller.

The third assertion (of non-intersecting Lorenz curves) is illustrated in Fig.
4.8, and can be readily inferred from the explicit formula for the Lorenz
curve of the Pareto distribution given in the Technical Appendix (page 157).
From that formula it may be seen that if we choose any value of F in Fig. 4.8

8 This is true for all continuous distributions. There is a distribution defined for discrete

variables (where y takes positive integer values only) which also satisfies the law. See the Technical
Appendix, page 161.
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Table 4.1. Pareto’s a and ‘average/base’ inequality

Ratio of average Pareto
income above you coefficient a
to your own income

1.50 3
1.75 2.333
2.00 2
2.50 1.667
3.00 1.5

(measured along the horizontal axis), then as we choose successively larger
values of a, each lying on a new Lorenz curve, the corresponding value of
® must become progressively larger. In other words, as we choose larger
values of a all the points on the relevant Lorenz curve must lie closer to
the diagonal. So no two Paretian Lorenz curves can cross.

0.8

0.6

b D(y)

0.4

0.2

| | N | | 0
0 0.2 04 Ky 06 0.8 1

F1G. 4.8. The Lorenz curve for the Pareto distribution
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These observations take us naturally on to our fourth point—the interpre-
tation of the parameters. You may already have come to suspect that the
parameter a reveals something about the amount of inequality exhibited by
a particular Pareto distribution. Since it is evident that, within the Pareto
family, Lorenz curves associated with higher values of a are closer to the line
of perfect equality, it follows that if we compare two Pareto distributions with
the same mean, the one with the higher value of a exhibits the less amount
of inequality for all inequality measures satisfying the weak principle of
transfers.”

Once again, just because the parameter a is convenient in the case of the
Pareto distribution, this does not mean that there is any particular merit in
using it as a measure of equality. We may prefer the cardinal characteristics
of some other measure, in which case we may compute the alternative
measure as a function of a using the table in the Technical Appendix, or
using Fig. 4.9. This figure is to be interpreted in a manner very similar to
that of Fig. 4.4 in the case of the lognormal distribution. The interpretation
of the parameter y can easily be seen from Fig. 4.9, which has been drawn
with y set arbitrarily to one. This parameter may assume any positive (but
not zero) value, and gives the lower income limit for which the distribution
is defined. By a simple application of van der Wijk’s law, putting yourself
at minimum income y, it can be seen that mean income for the whole
population is a

a—lz'

So, average income is proportional to minimum income and is a decreasing
function of a.!¢

The formal meaning of the fifth and final point in our list is the same as in
the case of the lognormal distribution. A proof is not difficult. Suppose that
the quantity y has the Pareto distribution with parameters y and a. Then

9 An intuitive argument can be used here. Using Van der Wijk’s law you find the gap between
your own income and the average income of everyone above you diminishes the larger is a. Thus
the ‘unfairness’ of the income distribution as perceived by you has diminished.

10" Another apparently paradoxical result needs to be included for completeness here. Specify
any social welfare function that satisfies properties 1 to 3 of Chapter 3 (note that we are not
even insisting on concavity of the SWF). Then consider a change from one Pareto distribution to
another Pareto distribution with a higher a but the same value of minimum income (for example
the two curves in Fig. 4.7). We find that social welfare decreases with a although, as we have seen,
inequality also decreases for any ‘sensible’ mean-independent inequality measure. Why does this
occur? It is simply that as o is increased (with y held constant) mean income y, which equals
ay/la — 1], decreases and this decrease in average income is sufficient to wipe out any favourable
effect on social welfare from the reduction in equality. Of course, if a is increased, and minimum
income is increased so as to keep y constant, social welfare is increased for any individualistic,
additive, and concave social welfare function.
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FIG. 4.9. Inequality and Pareto’s a

from the Technical Appendix we find that the proportion of the population
with income less than or equal to y is given by

y —-a
Fo=1-|2| .
») [y}

Now consider another quantity w related to y by the formula,
w = Ayh ,
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where of course the minimum value of w is w = AXb- Then we see that

y w1/
yz[w} '

Substituting in the formula for F we find

w —a/b
Fw)=1- [7] .
w

In other words the transformed variable also has the Pareto distribution
with parameters w and a/b. Therefore we once again have the simple result
that if pre-tax incomes are distributed according to the Pareto law, and if
the tax system is closely approximated by the constant residual progres-
sion formula, then post-tax incomes are also distributed according to the
Pareto law.

4.4 How good are the functional forms?

An obviously important criterion of suitability of a functional form is that it
should roughly approximate the facts we wish to examine. It is too much to
hope for that one formula is going to fit some of the data all of the time or all
of the data some of the time, but if it fits a non-negligible amount of the data
a non-negligible amount of the time then the mathematical convenience of
the formula may count for a great deal. One immediate difficulty is that
the suitability of the functional form will depend on the kind of data being
analysed. I shall deal with this by arbitrarily discussing four subject areas
which are of particular economic interest. In doing so I am giving a mere
sketch of the facts which may provide those interested with a motivation to
enquire further.

Aitchison and Brown (1957) argued that the lognormal hypothesis was
particularly appropriate for the distribution of earnings in fairly homoge-
neous sections of the workforce. Thus, for example, in British agriculture
in 1950 we find that the distribution of earnings among cowmen, the dis-
tribution among horsemen, that among stockmen, and that among market
gardeners proves in each case to be close to the lognormal. This evidence
is also borne out in other specific sectors of the labour market and in other
countries.

When we look at more comprehensive populations a difficulty arises in
that the aggregate of several distinct lognormal distributions may not itself
be lognormal. Suppose you have a number of different subgroups within
the population (for example cowmen, horsemen, stockmen, etc.) and within
each subgroup the distribution in the resulting population (all agricultural
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workers) will only be lognormal if, among other things, the dispersion
parameter ¢? may be taken as uniform throughout the groups. If your
lognormal pigmen have a higher ¢ than your lognormal tractor drivers,
then you are in trouble. Possibly because this restrictive condition is not
generally satisfied, systematic departures from lognormality are evident in
many earnings distributions—although it is interesting to note that Fig. 4.10
illustrates that the lognormal distribution is not a bad approximation for
male manual earnings in the UK. Because of this difficulty of aggregation
Lydall (1968), in attempting to find a general description of his ‘standard
distribution’ of pretax wages and salaries for all adult non-agricultural work-
ers, makes the following observations. The central part of the distribution
(from about the 10th percentile to the 80th percentile) is approximately
lognormal. But the observed distribution has more of its population in its
tails than a member of the lognormal family should have. In fact the upper
tail (about the top 20 per cent of the population) approximates more closely
to the Pareto distribution.

If we are going to use current receipts as some surrogate measure of
economic welfare then it is clear that a more comprehensive definition of
income is appropriate. When we examine the distribution of income (from

fy) A

| ——— NES 2002
O T (R o~ T [N Lognormal (5.84, 0.13)

o o o (=] o o o o o o o o o o o o o o o o o
(¥ wv) o v o v o g o v o v o v o v o ) o ) o
(W) — — o~ ~N o [aa] < <t v vy \O O N N ) 0 (o)) (o)} [«
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G
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FI1G. 4.10. The distribution of earnings. UK male manual workers on full-time adult
rates

Source: New Earnings Survey, 2002
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all sources) we find that the lognormal assumption is less satisfactory, for
reasons similar to those which we discussed when dealing with the aggrega-
tion of earnings—compare the logarithmic transformation in Fig. 2.5 with
the ‘ideal’ shape of Fig. 4.1 just above. We are quite likely to find substantial
departures at the lower tail, for reasons that are discussed in the next chap-
ter. However, for the middle part of the income distribution, lognormality
remains a reasonable assumption in many instances, and the assumption of
a Paretian upper tail remains remarkably satisfactory, as the evidence of Fig.
4.5 bears out. This enables us to take a piecemeal approach to modelling
inequality, adopting different functional forms for different parts of the
income distribution, which may be useful if we just want to focus on one
part of the picture of inequality rather than attempting a panoramic view.
As we have seen, it is this close approximation of the upper tail which led
to some of the more optimistic conjectures of Pareto’s disciples. It is perhaps
otiose to mention that since Pareto’s data necessarily related to high incomes
alone, his law can hardly be expected to apply to the income distribution as
a whole. The Paretian upper tail that has emerged from a study of income
distributions also works very well for the distribution of wealth. There is a
superficial reason to suppose that a curve like Pareto’s might be useful in
this application. Wealth data are often compiled with any accuracy only for
the moderately wealthy and above. Hence—excluding those whose wealth
is unrecorded—one often finds a single-tailed distribution. Evidence on the
linearity of the Pareto diagram (and hence on the close fit of the Pareto
formula) is clear from Fig. 4.11; notice that the straight line approximation

P=1-F(y)
- Identified wealth 2003

- 0.1 — Power (fitted to top 7 points)
: \
o

0.01

Y
0.001
£10,000 £100,000 £1,000,000 £10,000,000

(log scale)

FI1G. 4.11. Pareto diagram. UK wealth distribution 2003
Source: Inland Revenue Statistics
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FIG. 4.12. Pareto’s a: USA and UK
Source: see text

Table 4.2. Pareto’s a for income distribu-
tion in the UK and the USA

UK USA
1688 1.58 1866-71  1.40-1.48
1812 1.31 1914 1.54
1843 1.50 1919 1.71
1867 1.47 1924 1.67
1893 1.50 1929 1.42
1918 1.47 1934 1.78
1937-38 1.57 1938 1.77
1944-45 1.75 1941 1.87
1945 1.95

Source: Bronfenbrenner (1971), p. 46

is particularly good if we drop the first few observations rather than trying
to fit a line to all the points.

Figure 4.12 illustrates the history of Pareto’s a from the early twentieth
century to the early twenty-first century, for both income and wealth;!!
Table 4.2 gives some elements of the incomes story from earlier times. It

11 The series are based on tax data and focus solely on upper incomes (before tax) and
substantial wealth. Sources are as follows. US income: Atkinson and Piketty (2007), Chapter 5. UK
income: Atkinson and Piketty (2007), Chapter 4. US wealth: Kopczuk and Saez (2004). England
and Wales wealth: Atkinson et al. (1989). UK wealth (1): Atkinson et al. (1989). UK wealth (2):
HMRC Series C. For the data and methods see the file ‘Pareto Example’ on the website; see also
Question 8 below.
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is clear that, in the case of incomes, the values of a are typically in the range
1.5 to 2.5 and that the value for wealth is somewhat lower than that. It is
also clear that a had been rising for much of the twentieth century (in other
words inequality was falling) but that that in the last 25 years or so there has
been a marked reversal of this trend.

For our final application, the analysis of the distribution of firms by
size, succinct presentation of the evidence and comparison with the special
functional forms can be found in Hart and Prais (1956) (for the UK) and
in Steindl (1965) (for the USA and Germany). The Pareto law only works
for a small number of firms that happen to be very large—but, as Steindl
(1965) points out, although this represents a small proportion of individual
business units, it accounts for a large proportion of total corporate assets. You
typically find a in the (rather low) 1.0 to 1.5 range. However, the lognormal
functional form fits a large number of distributions of firms by size—where
size can variously be taken to mean corporate assets, turnover, or number
of employees. These approximations work best when industries are taken in
broad groupings rather than individually.

This perfunctory glimpse of the evidence is perhaps sufficient to reinforce
three conclusions which may have suggested themselves earlier in the dis-
cussion.

* Neither the Pareto nor the lognormal hypothesis provides a ‘law’ of dis-
tribution in the strict sense that one particular member of either family is
an exact model of income or distribution in the long run. In particular it
is nonsense to suppose that the Pareto curve (where applicable) should
remain stable over long periods of history. As it happens, a had been
increasing nearly everywhere until recently.

* However, interpreting the Pareto or the lognormal ‘law’ as a descrip-
tion of the shape of particular distributions is more promising. Neither
hypothesis usually works very well, ! since the real world is too compli-
cated for this, unless we look at a very narrow and well-defined piece of
the real world such as the earnings of cowmen or the wealth of people
with more than £100,000.

» Nevertheless one or other functional form is a reasonable approximation
in a heartening number of cases. The short cuts in empirical analysis
that are thus made possible amply repay the trouble of understanding
the mechanics of the mathematical formulas in the first place. In some
cases one may be able to make much better approximations using more

12 See the next chapter for a brief discussion of the criteria of fit.
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sophisticated functional forms—a discussion of these is provided on
pages 158 onwards.

This simplification will perhaps be more readily appreciated when we
come to wrestle with some of the difficulties that arise in the next
chapter.

4.5

1.

100

Questions

Suppose {us, uy, , ..., u, ...} is a sequence of independently and identi-
cally distributed normal variables. If u; is distributed N(0, v?) what is
the distribution of Au; where A is a positive constant? Now suppose
that successive values of the variable x; are determined by the following
process:

Xt = /\Xt—l + e,

fort=1, 2,3, ... where u; satisfies the assumptions just described and is
independent of x;. Write x; as a function of the initial value xy and the
sequence {ui, Uy, , ..., U, ...}. Show that

1
N1

var(x;) = A?var(xg) + v?

. Suppose income at time O, yp, is distributed lognormally. Over a

sequence of periods t =1, 2, 3, ...the logarithm of income x; then fol-
lows the above process. Give a simple economic interpretation of what
is happening. What will be the distribution of income in period t?
Under what conditions will the distribution of income converge in the
long run? If there is convergence what is the long-run value of the Gini
coefficient?

. Using the data for the UK 2003 earnings distribution (‘NES’ on the

website) compute the mean and the coefficient of variation (i) directly
from the raw data and (ii) using the fitted lognormal distribution
illustrated in Fig. 4.10 (use the relevant formula in Table A.2 on
page 156).

. Show that the ‘first guess’ at the Pareto distribution given by the

formula for the frequency distribution on page 87 really does corre-
spond to the formula for the distribution function F on page 157 of
Appendix A. What is the relationship of the constants k; and k; to the
parameters y and a?

. Use the formulas given in the Table A.2 and on page 157 to:

(a) derive the generalized Lorenz curve for the Pareto distribution;
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(b) sketch the relationship between the coefficient of variation ¢ and a
in Fig. 4.9;
(c) show why is ¢ undefined for a < 2.

(a) Using the data for the UK wealth distribution 2003 (see the file
‘IR wealth’ on the website) compute the Gini coefficient on the
assumptions (i) that persons not covered by the wealth table
are simply excluded from the calculation, and (ii) individuals in
a given wealth interval class possess the mean wealth of that
interval.

(b) Rework the calculation in part (a) on the alternative assumption that
the group excluded by assumption (i) actually consists of n persons
each with a wealth y,, where n and y, are positive numbers (chosen
by you). What would be reasonable ranges of possible values for
these numbers? How does the computed Gini coefficient vary with
nand yo?

(a) Using the same source on the website as in Question 6, for the
lower bound of each wealth interval y, compute P (as defined
on page 88) and then use ordinary least squares to fit the
equation

log(P) = Bo + B1 log(y);

then find the estimate of Pareto’s a. Use this estimate to compute the
Gini coefficient on the hypothesis that the underlying distribution
is Paretian.

(b) Repeat part (a) after dropping the first three intervals.
(c) Compare your answers with those for Question 6.

(a) Suppose the Pareto-type density given on page 87 applies only to
a bounded income interval [a, b] rather than to the whole range of
incomes. Compute the mean and the variance of this distribution,
and compare them with the results for the standard Pareto type I
distribution given on page 157.

(b) Suppose that in a set of official income data you are told the upper
and lower boundaries of a particular income interval, the numbers
of incomes in the interval, and the total amount of income in the
interval. Show how you could use the formula derived in part (a)
for the mean to derive an estimate of the value of Pareto’s a in the
interval (see also the discussion on page 128 in Chapter 5 and page
175 in the Technical Appendix).
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(c) Suppose that you are given the following information about top
incomes in a case where you believe the underlying distribution to
be Paretian:

Group Income share
top 0.01% 3.21%
top 0.05% 6.58%
top 0.1% 8.68%
top 0.5% 15.46%
top 1% 19.24%
top 5% 30.35%
top 10% 37.03%

Show how you could use this information to provide a simple
estimate of Pareto’s a (see the file ‘Pareto example’ on the website).
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5

From Theory to Practice

‘What would life be without arithmetic, but a scene of horrors?’
Rev. Sydney Smith (1835)

So where do we go now? One perfectly reasonable answer to this would be
to return to some of the knotty theoretical issues to which we accorded only
scant attention earlier.

Were we to follow this course, however, we should neglect a large number
of problems which must be wrestled with before our ideas on inequality can
be applied to numbers culled from the real world. In this chapter we shall
review these problems in a fairly general way, since many of them arise in the
same form whatever concept of income, wealth, or other personal attribute
is examined, and whatever the national or international source from which
the data are drawn.

Data

Computation
Appraising the results
Special functional forms

Interpretation

A CATALOGUE OF PROBLEMS

It is expedient to subdivide the practical problems that we shall meet
into five broad groups: those that are associated with getting and under-
standing the original data; those arising from computations using the data;
those involved in an appraisal of the significance of these calculations; the
problems connected with the use of special functional forms for income
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distribution; and the interpretation of results. Of course many of these
problems interact. But we shall try to deal with them one at a time.

5.1 The data

The primary problem to be dealt with by anyone doing quantitative research
into inequality is that of defining the variable y which we have loosely called
‘income’, and then getting observations on it. In this section we deal with
some of these conceptual and practical issues.

For certain specific problem areas the choice of variable and of source
material is usually immediately apparent. For example, if one is interested
in the inequality of voting power in a political system, the relevant variable
is the number of seats allocated per thousand of the population (the fraction
of a representative held by a voting individual); in this situation it is a
straightforward step to impute an index of voting power to each member
of the electorate. However, in a great many situations where inequality
measures are applied, a number of detailed preliminary considerations about
the nature of the ‘income’ variable, y, and the way it is observed in practice
are in order. The reasons for this lie not only in the technique of measure-
ment itself, but also in the economic welfare connotations attached to the
variable y. For in such cases we typically find that a study of the distribution
of income or wealth is being used as a surrogate for the distribution of
an index of individual well-being. We shall consider further some of the
problems of interpreting the data in this way once we have looked at the
manner in which the figures are obtained.

There are basically two methods of collecting this kind of information:

* You can ask people for it.

e You can make them give it to you.

Neither method is wholly satisfactory since, in the first case, some people
may choose not to give the information, or may give it incorrectly and, in
the second case, the legal requirement for information may not correspond
exactly to the data requirements of the social analyst. Let us look more
closely at what is involved.

Method 1: Asking People

This approach is commonly used by those organizations that desire the raw
information for its own sake. It involves the construction of a carefully strati-
fied (and thus representative) sample of the population, and then requesting
the members of this sample to give the information that is required about
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their income, wealth, types of asset-holding, spending patterns, household
composition, etc. This method is used in the UK’s Family Resources Survey,
and in the Current Population Surveys conducted by the US Bureau of the
Census. Obviously a principal difficulty is, as I mentioned, that of non-
response or misinformation by those approached in the survey. A common
presumption is that disproportionately many of those refusing to cooperate
will be among the rich, and thus a potentially significant bias may be
introduced into the results. However, the response rate in some of the major
surveys is surprisingly good (typically some 60 per cent to 80 per cent), and
usually the raw data are weighted in order to mitigate the effect of non-
response bias. A manifest advantage of this method of data collection is that
if a person volunteers to take part in a survey, it may be possible to secure
much more detailed and diverse information than could be arranged under
a method involving compulsion, thus potentially broadening the scope of
social enquiry.

Method 2: Compulsion

Useful information on income and wealth is often obtained as a by-product
of such tiresome official obligations as making tax returns. The advan-
tages of this conscript data over the volunteered survey data are obvious.
Except where the tax administration is extremely informal (as is commonly
supposed to be true in some Mediterranean countries) such that evasion
introduces a substantial bias, it is usually possible to obtain a larger and
more representative sample of the population. Non-response bias is less
important, and it may be that in some countries legal penalties act as a
suitable guarantee to ensure the minimum of misinformation.

However, the drawbacks of such data are equally evident. In the study of
income distributions, the income concept is that for which it is expedient for
the authorities to define the tax base, rather than a person’s ‘net accretion
of economic power between two points in time’ (Royal Commission on
the Taxation of Profits and Income 1955), which is considered to be ideal
for the purposes of the economist. Hence many components of a compre-
hensive definition of income—such as capital gains, fringe benefits, home
production, the imputed value of leisure time and of owner-occupancy—
may be imperfectly recorded, if recorded at all. Indeed, one may suppose that
frequently both the rich and the not-so-rich will have taken steps legally to
avoid the tax by transforming some part of their income into non-taxable—
and unpublished—forms. These warnings apply with increased emphasis in
the case of wealth. Furthermore the sample population whose income or
wealth is reported in the official figures often inaccurately represents the
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poot, since those with income or wealth below the tax exemption limit may
either be excluded, or be recorded in insufficient detail.

The picture of inequality that would emerge from this sort of study is seen
in Fig. 5.1, which illustrates the UK distribution of income before and after
tax in 2005/6, based on tax returns. It is tempting to contrast this with
the picture that we have already seen based on the more comprehensive
Economic Trends data for 1984/5 (compare the broken curve in Fig. 5.1 here
with Fig. 2.2 on page 20 above). Of course this is not an entirely satisfactory
comparison between the distributions to be obtained from the two data
sources; after all the diagrams refer to periods that are years apart. However,
if we try to bring the comparison up-to-date we encounter a difficulty that
is common even in countries with well-developed statistical services: the
Economic Trends series no longer exists.

To make a reasonable comparison of the pictures of income distribution
that would emerge from the two principal methods of data-gathering, we
could use a more recently published source that is now the UK'’s official
income distribution series. Households Below Average Income (HBAI) pro-
vides estimates of disposable income based on the UK’s Family Resources
Survey, the results of which are summarized in Fig. 5.2, using the same
income groupings as in Fig. 5.1. In comparing this figure with the Inland
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F1G. 5.1. Frequency distribution of income, UK 2005/6, before and after tax
Source: Inland Revenue Statistics
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F1G. 5.2. Disposable income (before housing costs) UK 2006/7
Source: Households Below Average Income, 2008

Revenue Statistics distribution of income after tax (the dotted line in Fig. 5.1)
we immediately notice the interesting shape of the lower tail in Fig. 5.2
by contrast to the manifestly incomplete picture of the lower tail in
Fig. 5.1.

What is included?

Which heads are counted, and who shares in the cake?
To what time period does it relate?

What valuation procedure has been used?

Which economic assumptions have been made?

THE VARIABLE y: A USER’S GUIDE

With little mental effort, then, we see that the practical definition of the
variable y—and hence the picture of its distribution—is only going to be as
good as the way in which the information on it is compiled. So if you, as
a student of inequality, are being asked to ‘buy’ a particular set of data on
income or wealth, what should you watch out for? For a quick assessment,
try the check-list in the accompanying box. Let us briefly examine each of
these five items in turn.
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WHAT IS INCLUDED?

Recalling the argument of Chapter 1, if we concern ourselves with a narrowly
defined problem there is relatively little difficulty: an inquiry into, say, the
inequality in earnings in some particular occupation will probably require
a simple definition of the income variable. I shall use this approach later
in the chapter when we look at inequality in the income reported to the
tax authorities in the USA. For a wide interpretation of inequality, of course,
you obviously need to reflect on whether the definition of income is as all-
embracing as it was suggested on page 105 that it should be. Furthermore, if
you want to arrive at people’s disposable incomes, then careful consideration
must be given to the adjustment that has been made for direct and indirect
taxes, for social security benefits and other money transfer incomes, and for
benefits received ‘in kind’ from the state, such as education.

This point raises issues that deserve a chapter—if not a book—to them-
selves. However, we can get a feel for the practical impact of an adjustment in
the concept of income by referring again to the data source used for Fig. 5.2.
Some have argued that, because of the way in which housing expenditures
are sometimes treated as a kind of committed expenditure component in the
UK they should be treated as though they were a tax, and should therefore
be deducted to get a truer picture of disposable income. Irrespective of the
economic merits of this argument, it is interesting to note the impact of this
on the apparent inequality of the income distribution—see Fig. 5.3 which
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presents the after-housing-cost (AHC) distribution using the same income
groupings as for Figs 5.1 and 5.2 (note that the AHC distribution has a
number of negative incomes).

WHICH HEADS ARE COUNTED?

The answer is obvious in some cases—for example in a study of the distri-
bution of voting power one considers each enfranchized person. In other
cases, such as those where tax returns are used, the choice of ‘heads’ is made
for us—they are the ‘tax units’, which sometimes means all men and women
individually, but often refers to nuclear families and to unrelated individuals.
For wealth data, the unit is in general a single ‘estate’, the benefits of which
may be enjoyed by one person, or by a number in a family group. Unfortu-
nately, detailed information such as family composition of the income- or
wealth-holding tax units is available for few countries, whereas this detail
can usually be obtained from voluntary sample surveys. Where this detail is
available one may allow for differing family size by taking two distinct
steps:

Modified OECD McClements

BHC AHC BHC AHC

First adult  0.67 0.58 0.61  0.55

Spouse  0.33 0.42 0.39 045

Other second adult  0.33 0.42 0.46 045

Third adult  0.33 0.42 0.42 045

Subsequent adults  0.33 0.42 0.36 040

Children aged under 14 yrs  0.20 0.20 0.20  0.20
Children aged 14 yrs and over  0.33 0.42 032 0.34

Source: Department of Work and Pensions (2008) Appendix 2

EQUIVALENCE SCALES

* Adjusting each family’s income to allow for differences in needs between
different types of families. The process—known in the jargon as ‘equival-
izing’ the incomes—involves dividing the income by an index. The first
column in the accompanying box is a modified version of the widely
used OECD equivalence scale, where the scale is normalized so that a
couple—i.e. two adults living together—has an index equal to 1 (for
example taking the BHC version a couple with two children under 14
and a nominal income of £40,000 would have an equivalized income
of £40,000/(0.67+0.33+0.20+0.20) = £28,571.43); the second column is
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the counterpart scale that would be applied to AHC data. The HBAI data
now uses this method of adjusting for needs as standard, but it used to
use the scale presented in the third and fourth columns (McClements
1977). As we can see, the two conventional scales will produce the same
results for a family consisting of a couple and young children, but they
would give different results for single adults living alone. The equiva-
lence scale could in principle be derived in a number of ways: by using
expert assessments of budgets required to meet minimum standards, by
comparing the actual expenditure patterns of different types of family
on particular categories of goods, or by taking the relative needs implicit
in official income support scales, for example.

* Weighting each family’s representation in the sample so that the income
distribution is amongst persons rather than arbitrary family units. This
is usually done by weighting in proportion to the number of persons in
the family (so the above imaginary family of a married couple and two
children would be weighted by a factor of four).

There is a variety of alternative assumptions that could be made about
each of these two steps, and you should be warned that these adjustments
can significantly affect the picture of inequality that emerges (see Question
2 for an example of this).

You may well conclude that big enough problems are raised in dealing with
the heterogeneous people who are there in the sample population; but an
even bigger problem is posed by those who aren’t there. This remark applies
generally to tax-based data, and particularly to wealth. Only those estates
that are sufficiently extensive to attract the attention of the tax authorities
are usually included in the data, and hence there is a large proportion of the
population which, although not destitute, does not appear in the published
figures. Basically you have to do one of three things: leave these people
out altogether (and so underestimate the amount of inequality); include
them, but with zero wealth (and so overestimate inequality); or make some
estimate of the wealth to be imputed per capita, by using information from
alternative sources on total wealth, or—more ambitiously—by guessing at
the distribution among these excluded persons.

WHAT TIME PERIOD?

Income—as opposed to wealth—is defined relative to a particular time unit,
and you will generally find that measured inequality is noticeably lower if
the personal income concept relates to a relatively long period than if quite
a short time interval, such as a week or a month, is considered. The reason
is simply that people’s incomes fluctuate, and the longer you make the time
unit, the more you ‘average out’ this volatility. As we noted in Chapter 1, the
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ultimate extension of this is to examine the distribution of lifetime average
income. However, apart from the conceptual difficulties involved, there may
be practical problems too. In some cases longitudinal datasets are available
that track the individual incomes over more than one period: these may
be used to derive estimates of the interpersonal distribution of a lifetime
average, although fairly sophisticated techniques may be required; in some
cases sufficiently detailed data are just not available.

WHAT VALUATION PROCEDURE HAS BEEN USED?

As we have seen, there are substantial problems of incorporating non-
monetary items into the income or wealth aggregate, such as income in kind
or assets for which no easily recognized market price exists. In addition to
these problems, the question of the valuation procedure arises particularly
when analysing trends of inequality over time, or in making comparisons
between countries. For, when looking at time trends, we must recognize that
changes in consumer goods’ prices will affect the purchasing power of the
poor and of the rich in different ways if the spending patterns of these two
groups are significantly different. In some advanced economies during the
recent past, price increases happen to have affected necessities dispropor-
tionately more than luxuries, and as a consequence looking at inequality
purely in money-income terms conceals an increasing trend in inequality
of real purchasing power. If we want to compare inequality within different
countries, or to examine inequality among countries in per capita income,
then even worse trouble lies ahead: one must wrestle with diverse definitions
of income, differing relative prices (as in the time trend problem), different
levels and forms of public expenditure, and artificial exchange rates—which
collectively are giants barring the way to comparability in income- or wealth-
valuation.

WHICH ECONOMIC ASSUMPTIONS HAVE BEEN MADE?

To procure certain versions of the income or wealth variable some economic
sleight-of-hand is essential, and it is important to grasp the legitimate tricks
involved. Let us briefly consider two of the most frequently encountered
issues.

First, how are we to allow for people’s reactions to price and income
changes? Taxation generally involves distortion of prices—those of com-
modities, and the value of time available for work. Now people’s choices of
the amount they work and the amount they save may be affected by changes
in these prices, which means in turn that the income distribution itself is
affected. So if you want to infer from the published figures what the shape
of the income distribution would be without government intervention, you
must allow for this income response, which in practice usually means flatly
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ignoring it. This remark applies to the effects of indirect taxation as well as
to income tax.

The second issue concerns the assumptions about markets. Time and again
one has to sum unlike components in an income or wealth aggregate. To
get an overall measure of net worth one adds a person’s current wealth
(in terms of marketable assets) to a present valuation of future income
receipts from other sources. To evaluate a family’s disposable income after
all forms of intervention one must include the value of non-monetary
government transfers along with money income. Either exercise involves
not only the selection of prices, as we discussed above, but usually a tacit
assumption about the existence of efficiently-operating markets for capital
and for government-provided goods. To see this, note that a person with
high future income but low current wealth can only be said to be as well-off
as a person with high current wealth but low income prospects if it is possible
to borrow from the capital market on the strength of one’s anticipated high
earnings. Taking your cue from the Rev. S. Smith, you might think that
enough ‘horrors’ had been met in just examining the data. But we must
press on.

5.2 Computation of the inequality measures

Let us assume that you have decided on the variable y that you wish to
use, and the source from which you are going to extract the data. As we
shall see, there are some potentially significant problems associated with the
arithmetic involved in proceeding from a table of raw data to a number
giving the realized value of an inequality measure. We proceed by describing
a number of inequality measures that were introduced in Chapters 2 and 3
in a formal but economical manner, and then using this presentation to
explore the practical difficulties.

Suppose that for a particular population you know the theoretical density
function f(y), which gives the proportion of the population that has an
income in the infinitesimal interval y to y +dy.! This function is defined

I For those who are uneasy about integration an intuitive description may help. Suppose
that you have a diagram of a smooth curve ¢(y), drawn with y measured ‘horizontally’ and

¢ ‘vertically’. Then fab #(y)dy means the area under the curve, above the horizontal axis and

bounded on either side by the vertical lines y = a and y = b. Thus in Fig. 2.2 flloz(i%) ¢(y)dy means

the area between the smooth curve and the line OF that also lies between the points marked
10,000 and 12,500. Instead of working out just the one single shaded rectangle, it is as though
we calculated the area of lots of rectangles of tiny base width made to fit under the curve along
this small interval. The ‘/” sign can be taken as something quite similar to the summation
sign ‘2.
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so that if it is summed over the entire income range the result is exactly 1;
formally:

[ ray=1.

Now let us suppose that the desired inequality measure, or an ordinally
equivalent transformation of the desired inequality measure, can be written
in the following way, which we shall refer to as the basic form:

1=£ h(y) F(y)dy,

where h(.) is an evaluation function—some function of y that we have yet
to specify and which may also depend on mean income. It so happens
that nearly every inequality measure that is of interest, except the Gini
coefficient, can be shown to be ordinally equivalent to something that can
be written in the basic form—mathematically inclined readers are invited to
check this from Tables A.1 and A.2 in the Technical Appendix. Some can be
written exactly in the basic form—for example the relative mean deviation,
for which we would have the following evaluation function

Y
h == -1
») ‘y

or Theil’s inequality measure, for which we find

L)

Others are related to the basic form by a simple transformation—for example

if we specify
y 1-¢
wo-[3]
: Y

and then consider the transformation 1 — ]!/ [ we find that we have
A, Atkinson’s inequality index with inequality aversion parameter €. It is
worth re-emphasizing that, as long as we have defined a sensible inequality
measure, the exact specification of the evaluation function h(.) does not
matter at all, and the basic form is just a neat way of describing a large
number of measures.

However, the basic form gives the inequality measure in theoretical terms
using a continuous distribution function. One might specify one particular
such continuous function (for example, the lognormal or the Pareto) as
a rough and ready approximation to the facts about the distribution of
income, wealth, etc.; the problems associated with this procedure are taken
up later. But in practice we may not wish to use such approximating devices,

1-€]
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and we would then want to know what modifications need to be made to
the basic form in order to use it directly with actual data.

fo h(y) f(ndy
Density function: f(y)

Evaluation function: /(y)
Lower bound of y-range: O

Upper bound of y-range: co

THE MEASURE J: BASIC FORM

First of all, let us note that if we are presented with n actual observations
Vi, Y2, V3, ..., yn Of all n people’s incomes, some of our problems appear to be
virtually over. It is appropriate simply to replace the theoretical basic form
of ] with its discrete equivalent:

J =23 o0,
i=1

What this means is that we work out the evaluation function h(y) for
Mr Jones and add it to the value of the function for Ms Smith, and add
it to that of Mr Singh, ... and so on.

It is a fairly simple step to proceed to the construction of a Lorenz curve
and to calculate the associated Gini coefficient. There are several ways of
carrying out the routine computations, but the following is straightforward
enough. Arrange all the incomes into the ‘Parade’ order, and let us write
the observations ordered in this fashion as yuy, ), ..., ¥w, (so that yu
is the smallest income, y(2) the next, and so on up to person n). For the
Lorenz curve, mark off the horizontal scale (the line OC in Fig. 2.4) into
n equal intervals. Plot the first point on the curve just above the endpoint
of the first interval at a ‘height’ of y)/n; plot the second at the end of the
second interval at a height of [y + y(2)]/%; the third at the end of the third
interval at a height [y + y2) + ¥3)1/1; ... and so on. You can calculate the
Gini coefficient from the following easy formula:

n+1
n

2
G= = [V +2V@) +3ye) + -+ W —

This observation-by-observation approach will usually work well for all
the methods of depicting and measuring inequality that we considered in
Chapters 2 and 3 with just two exceptions: the frequency distribution and
the log frequency distribution. To see what the problem is here imagine
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FIG. 5.4. Income observations arranged on a line

setting out the n observations in order along the income line as represented
by the little blocks in Fig. 5.4. Obviously we have a count of two incomes
exactly at point A (y(2) and y3)) and one exactly at point C (income y4)), but
there is a count of zero at any intermediate point such as B. This approach
is evidently not very informative: there is a problem of filling in the gaps.
In order to get a sensible estimate of the frequency distribution, we could
try a count of the numbers of observations that fall within each of a series of
small fixed-width intervals, rather than at isolated points on the income line
in Fig. 5.4. This is in fact how the published HBAI data are presented—see
Fig. 5.5. Of course the picture that emerges will be sensitive to the arbitrary
width that is used in this exercise (compare Fig. 5.5 with the deliberately
coarse groupings used for the same data in Fig. 5.3); more seriously this
method is going to yield a jagged discontinuous frequency distribution that
appears to be an unsatisfactory representation of the underlying density
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F1G. 5.5. Frequency distribution of disposable income, UK 2006/7, (after housing
costs), unsmoothed
Source: as for Fig. 5.3
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function. It may be better to estimate the density function by allowing each
observation in the sample to have an influence upon the estimated density
at neighbouring points on the income line (a strong influence for points that
are very close, and a weaker influence for points that are progressively further
away); this typically yields a curve that is smoothed to some extent. An
illustration of this on the data of Fig. 5.5 is provided in Figs 5.6 and 5.7—the
degree of smoothing is governed by the ‘bandwidth’ parameter (the greater
the bandwidth the greater the influence of each observation on estimates of
the density at distant points), and the method is discussed in detail on pages
172ff in the Technical Appendix.

Unfortunately, in many interesting fields of study, the procedures that I
have outlined so far are not entirely suitable for the lay investigator. One
reason for this is that some of the published and accessible data on incomes,
wealth, etc. is presented in grouped form, rather than made available as
individual records.

However, there is a second reason. Some of the important sets of
ungrouped data that are available are not easily manipulated by the lay-
man, even a layman with a state-of-the-art personal computer. The problem
derives not from mathematical intractability—the computational tech-
niques would be much as I have just described—but from the vast quantity
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F1G. 5.6. Estimates of distribution function. Disposable income, UK 2006/7, (after
housing costs), moderate smoothing
Source: as for Fig. 5.3
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Fi1G. 5.7. Estimates of distribution function. Disposable income, UK 2006/7, (after
housing costs), high smoothing
Source: as for Fig. 5.3

of information typically involved. An ‘important’ study with ungrouped
data usually involves the coverage of a large and heterogeneous population,
which means that n may be a number of the order of tens of thousands. Such
data-sets are normally obtained from computerized records of tax returns,
survey interviews, and the like, and the basic problems of handling and
preparing the information require large-scale data-processing techniques. Of
course it is usually possible to download extracts from large datasets on
to storage media that will make it relatively easy to analyse on a micro-
computer: from then on you can apply the formulas given here and in the
Technical Appendix using even simple spreadsheet tools (see the website).
Nevertheless if you are particularly concerned with easy availability of data,
and wish to derive simple reliable pictures of inequality that do not pretend
to moon-shot accuracy, you should certainly consider the use of published
data, which means working with grouped distributions. Let us look at what
is involved.

Were we to examine a typical source of information on income or wealth
distributions, we should probably find that the facts are presented in the fol-
lowing way. ‘In the year in question, n; people had at least $a; and less than
$ay; ny people had at least $a, and less than $as; n3 people had at least $a3
and less than $ay,...." In addition we may be told that the average income of
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Table 5.1. Distribution of income before tax, USA 2006

Lower Relative Cumulative
boundary of Number in Group f
. req freq
income groups mean
range ('000) income pop inc pop inc
Q) @) 3 “ ©) (6) @)
(<$1,000) 2,676 -$34,006 -0.011  0.000 0.000
$1,000 11,633 $2,665 0.086 0.004 0.086 0.004
$5,000 11,787 $7,466 0.087 0.011 0.173 0.015
$10,000 11,712 $12,466 0.086 0.018 0.259 0.033
$15,000 10,938 $17,462  0.081 0.024 0.339 0.056
$20,000 9,912 $22,498 0.073  0.027 0.412 0.084
$25,000 8,750 $27,429 0.064 0.030 0.477 0.113
$30,000 14,152 $34,765 0.104  0.061 0.581 0.174
$40,000 10,687 $44,821  0.079  0.059 0.660 0.233
$50,000 18,855 $61,416 0.139  0.143 0.799 0.375
$75,000 11,140 $86,266  0.082  0.118 0.881 0.494
$100,000 12,088 $132,859 0.089 0.198 0.970 0.692
$200,000 3,121 $286,767 0.023  0.110 0.993 0.802
$500,000 589 $679,117 0.004 0.049 0997 0.851
$1,000,000 150 $1,213,333  0.001 0.022 0.998 0.873
$1,500,000 64 $1,718,750  0.000 0.014 0.999 0.887
$2,000,000 99 $2,979,798  0.001 0.036 1.000 0.923
$5,000,000 25 $6,840,000 0.000  0.021 1.000 0.944
$10,000,000 16 $28,250,000 0.000  0.056 1.000 1.000
all ranges 138,394
(positive inc.) 135,718 $59,830

Source: Internal Revenue Service

people in the first group ($4a; to $a,) was reported to be $u1, average income
in the second group ($a, to $a3) turned out to be $uz, and so on. Columns
1-3 of Table 5.1 are an example of this kind of presentation. Notice the
difference between having the luxury of knowing the individual incomes
Y1, V2. ¥3, ..., ¥s and of having to make do with knowing the numbers of
people falling between the arbitrary income-class boundaries a;, az, as, ...
which have been set by the compilers of the official statistics.

Suppose that these compilers of statistics have chopped up the income
range into a total of k intervals:

(a1, az) (az, az) (a3, ag) . .. (Gx, Ags1)-

If we assume for the moment that a; =0 and ax,1 = oo, then we have
indeed neatly subdivided our entire theoretical range, zero to infinity (these
assumptions will not do in practice as we shall soon see). Accordingly, the
inequality measure in basic form may be modified to:

Ak+1

f “h) FO)dy + / ) FO)dy .+ [ h(y) f(y)dy

k
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which can be written more simply:

k

> ) Fdy .

i=1

It may be worth repeating that this is exactly the same mathematical
formula as the ‘basic form’ given above, the only notational difference being
that the income range has been subdivided into k pieces. However, although
we have observations on the average income and the number of people
in each class (a;, ai+1), we probably have not the faintest idea what the
distribution F(y) looks like within each class. How can we get round this
problem?

In the illustrations of income distribution datasets used earlier in the book
(for example Fig. 5.1 above) we have already seen one way of representing
the distribution within each class, namely that f(y) should be constant
within each class. If we used the same assumption of uniformity within each
income class for the US income distribution data in Fig. 5.1 we would get a
picture like Fig. 5.8. However, in practice this is not a very good assumption.
In order to get the height of each bar in the histogram you just divide
the number of persons in the income class n; by the number in the total
population n to give the relative frequency in class i (columns 2 and 4 in

f(y)

>
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F1G. 5.8. Frequency distribution of income before tax. US 2006
Source: Internal Revenue Service
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FI1G. 5.9. Lower bound inequality, distribution of income before tax. US 2006
Source: Internal Revenue Service

Table 5.1), and then divide the relative frequency n;/n by the width of the
income class g;,1 —a; (column 1). But this procedure does not use any of
the information about the mean income in each class w; (column 3), and
that information is important, as we shall see.

A better—and simple—alternative first step is to calculate from the avail-
able information lower and upper limits on the unknown theoretical value
J . That is, we compute two numbers /i and Jy such that it is certain that

Ju=] =<Ju

even though the true value of ] is unknown.

The lower limit J;, is found by assuming that everyone in the first class
gets the average income in that class, $u1, and everyone in the second class
gets the average income in that class, $u»,...and so on. So, to compute /i,
one imagines that there is no inequality within classes (a;, ai,1) for every
i=1,2,...,k, as depicted in Fig. 5.9. Given that the population relative
frequency in income class i is n;/n (column 4 in Table 5.1) and the class
mean is u; (column 3) we then have:

K
Ju= Z %h(ﬂi)~
i1

120



From Theory to Practice

Notice that if we are given the average income in each class,
1, L2, U3, - - -, ik, We do not need to know the income-class boundaries
ai, az, as, ..., dg, in order to calculate Jy.

By contrast, the upper limit Jy is found by assuming that there is maxi-
mum inequality within each class, subject to the condition that the assumed
average income within the class tallies with the observed number w;. So
we assume that in class 1 everyone gets either $a; or $a, but that no one
actually receives any intermediate income. If we let a proportion

az — w1
N o= 2K
ay —

of the class 1 occupants be stuck at the lower limit, $a4;, and a proportion
1 —A; of class 1 occupants receive the upper limit income $a,, then we
obtain the right answer for average income within the class, namely $u,.
Repeating this procedure for the other income classes and using the general
definition

= diy1 — Hl
i =
diy1 — al

we may now write:
k
Ju=%" % [Aih(@) + [1 = ] h(ai)] -

A similar procedure can be carried out for the Gini coefficient. We have:

1 &E nin;
QZZ ]|M1 i

i=1 j=1

and
k 1’1-2
GU=GL+§HT)_/)\1' [/Jvi_ai]-

The upper-bound distribution is illustrated in Fig. 5.10.

We now have our two numbers Ji, Ju which will meet our requirements
for lower and upper bounds. The strengths of this procedure are that we
have not had to make any assumption about the underlying theoretical
distribution f(y) and that the calculations required in working out formulas
for Ji and Jy in practice are simple enough to be carried out on a pocket
calculator: there is an example of this in the ‘Inequality calculator’ file on
the website.

The practical significance of the divergence between J; and Jy is illustrated
for six inequality measures (c, G, T, Aos, A1, and Ap) in Table 5.2: this has
been constructed from the data of Table 5.1, on the basis of a variety of
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F1G. 5.10. Upper bound inequality, distribution of income before tax. US 2006
Source: Internal Revenue Service

alternative assumptions about the underlying distribution of income.
Because of the negative mean in the first interval the computations have
been performed only for the distribution of incomes of $1,000 or more. For
each inequality measure the columns marked ‘Lower Bound’ and ‘Upper
Bound’ correspond to the cases /i, and Jy above (see Figs. 5.9 and 5.10
respectively); the ‘Compromise’ value and the term in parentheses will be
discussed a little later. Likewise the rows marked (1), (2), (3) correspond to
three alternative assumptions about what happens to the income distrib-
ution in the upper and lower tails. Let us take first the simplest—though
not necessarily the best—of these: the central case (2) which amounts to
assuming that the lowest possible income, a;, was $1,000 and that the
highest possible income a1, was $40,000,000. It is obvious from the values
of the six inequality measures recorded that the size of the Upper-Lower gap
as a proportion of the compromise value varies a great deal from one measure
to another. While this gap is just 1.3 per cent for the Gini coefficient, 3.5 per
cent for Atkinson (Aps), and 4.7 per cent for Theil, it is as much as 11.3 per
cent for the coefficient of variation.?

2 Recall that ¢ is not written exactly in the ‘basic form’. However, the Herfindahl index
H = [c? + 1]/n can be written in this way. The proportionate gap between J; and Jy for H would
be 22.3 per cent.

122



From Theory to Practice

Table 5.2. Values of inequality indices under a variety of assumptions about the
data. US Internal Revenue Service 2006

Lower Compromise Upper Lower Compromise Upper
c Aos
(1) 5.684 ol ol 0.324 0.329 0.336
(2) 5.684 5.915 6.352 (0.346) 0.324 0.328 0.336 (0.334)
(3) 5.448 5.670 6.091 (0.346) 0.290 0.294 0.301 (0.337)
G A
(1) 0.594 0.600 0.602 0.514 0.523 0.537
(2) 0.594 0.600 0.602 (0.667) 0.514 0.522 0.537 (0.324)
(3) 0.563 0.568 0.571  (0.667) 0.442 0.447 0.455 (0.336)
T Az
(1) 1.003 1.060 1.086 0.760 0.784 0.828
(2) 1.003 1.019 1.051 (0.335) 0.760 0.784 0.828 (0.351)
(3) 0933 0.949 0.980 (0.335) 0.626 0.633 0.647  (0.335)

(1) Top interval is a Pareto tail, bottom interval included
(2) Top interval closed at $40m, bottom interval included
(3) Top interval closed at $40m, bottom interval excluded

Of course, the lower- and upper-bound estimates of inequality measures
may be sensitive to the assumptions made about the two extreme incomes
a1, ($1,000), and ax.1, ($40,000,000). To investigate this let us first look at
the lower tail of the distribution. Consider the calculations after all income-
receivers below $3,000 have been eliminated (metaphorically speaking)—see
row (3) for each of the measures presented in Table 5.2. As we expect, for
all the measures the amount of inequality is less for the distribution now
truncated at the lower end. But the really significant point concerns the
impact upon the Upper-Lower gap that we noted in the previous paragraph:
it is almost negligible for every case except A, which, as we know, is sensitive
to the lower tail of the income distribution (see page 53). Here the propor-
tionate gap is dramatically cut from 8.6 per cent to 3.3 per cent. This suggests
that the practical usefulness of a measure such as this will depend crucially
on the way lower incomes are treated in grouped distributions—a point to
which we return in the next section when considering SWF-based measures.

Now consider the upper tail. It is no good just putting ax,1 = oo, because
for several inequality measures this results in Jy taking on the ‘complete
inequality’ value, whatever the rest of the distribution looks like.? If the
average income in each class is known, the simplest solution is to make a
sensible guess as we have done in row (2) for each measure in Table 5.2. To
see how important this guess is, suppose that instead of closing off the last
interval at an arbitrary upper boundary ax,; we assumed that the distribution

3 A similar problem can also arise for some inequality measures if you put a; < 0.
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F1G. 5.11. The coefficient of variation and the upper bound of the top interval

in the top interval k was Paretian: this would then yield the results in row
(1) of Table 5.2. Comparing rows (1) and (2) we can see that for measures
such as A; or A, there is little discernible effect: this comes as no surprise
since we noted (page 53 again) that indices of this sort would be mainly
sensitive to information at the bottom end of the distribution rather than
the top.* By contrast the impact upon T of changing the assumption about
the top interval is substantial; and for the coefficient of variation c—which
is particularly sensitive to the top end of the distribution—the switch to the
Pareto tail is literally devastating: what has happened is that the estimate
of a for the fitted Pareto distribution is about 1.55, and because this is
less than 2, the coefficient of variation is effectively infinite: hence the
asterisks in Table 5.2. All this confirms that estimates of c—and of measures
that are ordinally equivalent to c—are sensitive to the precise assumption
made about the top interval. To illustrate this further, the results reported
in Table 5.2 were reworked for a number of values of a,1: the only measure
whose value changes significantly was the coefficient of variation, for which
the results are plotted in Fig. 5.11; the two outer curves represent the lower-
and upper-bound assumptions, and the curve in the middle represents a

4 There would be no effect whatsoever upon the relative mean deviation M: the reason for this
is that noted in Fig. 2.6: rearranging the distribution on one side of the mean had no effect on M.
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possible compromise assumption, about which we shall say more in just a
moment.

Let us now see how to draw a Lorenz curve. From column 5 of Table 5.1
construct column 6 in an obvious way by calculating a series of running
totals. Next calculate the percentage of total income accounted for in each
interval by multiplying each element of column 5 by the corresponding
number in column 4 and dividing by the population mean; calculate the
cumulative percentages as before by working out running totals—this gives
you column 7. Columns 6 (population shares) and 7 (income shares) form
a set of observed points on the Lorenz curve for the US Internal Revenue
Service data relating to 2006. These points are plotted in Fig. 5.12. We now
have a problem similar to those which used to occur so frequently in my
sons’ playbooks—ijoin up the dots.

However, this is not as innocuous as it seems, because there are infinitely
many curves that may be sketched in, subject to only three restrictions,
mentioned below. Each such curve drawn has associated with it an implicit
assumption about the way in which income is distributed within the income
classes, and hence about the ‘true’ value of the inequality measure that we
wish to use. If the dots are joined by straight lines, then we are assuming
that there is no inequality within income classes—in other words, this

1.0

0.8

0.6

0.4

Proportion of income

0.2

o7

©6
©5

a2 o3 °4

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of population

0.0

F1G. 5.12. Lorenz co-ordinates for Table 5.1
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®

F1G. 5.13. Upper and lower

bound Lorenz curves

corresponds to the use of ], the lower bound on the calculated inequality
measure, (also illustrated by the distribution in Fig. 5.9). This method is
shown in detail by the solid lines connecting vertices (8), (9), (10), (11) in
Fig. 5.13 which is an enlargement of the central portion of Fig. 5.12. By
contrast you can construct a maximum inequality Lorenz curve by drawing
a line of slope a;/y through the ith dot, repeating this for every dot, and then
using the resulting ‘envelope’ of these lines. This procedure is illustrated
by the dashed line connecting points A, B,C in Fig. 5.13 (in turn this
corresponds to Jy and Fig. 5.10). Now we can state the three rules that any
joining-up-the-dot procedure must satisfy:

* Any curve must go through all the dots, including the two vertices (0,0)
and (1,1) in Fig. 5.12.

e It must be convex.

* [t must not pass below the maximum inequality curve.

Notice that the first two of these rules ensure that the curve does not pass
above the minimum-inequality Lorenz curve.

One of the reasons for being particularly interested in fitting a curve
satistying these requirements is that the observed points on the Lorenz
curve in Table 5.1 (columns 6 and 7) only give us the income shares of the
bottom 8.6 per cent, the bottom 17.2 per cent,...and so on, whereas we
would be more interested in the shares of, say, the bottom 10 per cent, the
bottom 20 per cent, and to get these we must interpolate on a curve between
the points. Presumably the interpolation should be done using neither the
extreme upper- or lower-bound assumptions, but rather according to some
‘compromise’ Lorenz curve. One suggestion for this compromise method is
to use the basic Pareto interpolation formula (A.3) (given on page 157 in
the Technical Appendix), which is much less fearsome than it looks, because
you do not have to compute the parameters a, along the way. All you need

126



From Theory to Practice

f(y)

|

$40,000
$50,000
$75,000
$100,000
$200,000

F1G. 5.14. The ‘split histogram’ compromise

are the population and income shares. Unfortunately this simplicity is also
its weakness. Because the formula does not use information about the u;s
the resulting curve may violate the third condition cited above (the same
problem would arise if we used a Lorenz curve based on the simple histogram
density function illustrated in Fig. 5.14).

An alternative method—which may be implemented so that all three
conditions are satisfied—is to fit a theoretical frequency distribution within
each interval in Fig. 5.14, and work out the Lorenz curve from that. What fre-
quency distribution? In fact it does not matter very much what type is used:
all the standard ‘compromise’ interpolation methods® produce inequality
estimates that are remarkably similar. These methods (which are more easily
explained using the associated density function) include:

e a ‘split histogram’ density function in each interval. This is illustrated
in Fig. 5.14: contrasting this with Fig. 5.8 you will note that in each
interval there are two horizontal ‘steps’ rather than a single step in the
case of the regular histogram; this simple device enables one to use all
the information about the interval and is the procedure that was used
for the ‘compromise’ column in Table 5.2;

5 A minimal requirement is that the underlying density function be well-defined and piecewise
continuous (Cowell and Mehta 1982).
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* a separate straight line density function fitted to each interval;®

¢ loglinear interpolation in each interval. This is in effect a separate Pareto
distribution fitted to each interval (a;, ai,1), using all the available infor-
mation;

* a quadratic interpolation in each interval.

The details of all of these—and of how to derive the associated Lorenz
curve for each one—are given in the Technical Appendix.

It is reasonably straightforward to use any of these methods to compute a
compromise value for an inequality measure. But if you do not need moon-
shot accuracy, then there is another delightfully simple method of deriving a
compromise inequality estimate. The clue to this is in fact illustrated by the
columns in parentheses in Table 5.2: this column gives, for each inequality
measure, the relative position of the compromise estimate in the interval
(Ju,Ju) (if the compromise estimate were exactly halfway between the lower
and the upper bound, for example, then this entry would be 0.500). For
most inequality measures that can be written in the standard form, a good
compromise estimate can be found by taking % of the lower bound and
adding it to % of the upper bound (see for example the results on the
Atkinson and Theil indices). One notable exception is the Gini coefficient:
for this measure, the compromise can be approximated by %GL + %GU which
works extremely well for most distributions, and may also be verified from
Table 5.2. Given that it requires nothing more than simple arithmetic to
derive the lower and upper bound distributions from a set of grouped data,
this 2 — 2 rule (or 2 — 1 rule) evidently provides us with a very handy tool
for getting good estimates from grouped data.

5.3 Appraising the calculations

We have now seen how to calculate the indices themselves, or bounds on
these indices from the raw data. Taking these calculations at face value, let us
see how much significance should be attached to the numbers that emerge.

The problem may be introduced by way of an example. Suppose that
you have comparable distribution data for two years, 1985, 1990, and you
want to know what has happened to inequality between the two points in
time. You compute some inequality indices for each dataset, let us say the
coefficient of variation, the relative mean deviation, Theil’s index, and the
Gini coefficient, so that two sets of numbers result: {c1985, M19s5, T1985, G1985}
and {c1990, M1990, T1990, G1990}, €ach set giving a picture of inequality in the

6 A straight line density function implies that the corresponding Lorenz curve is a quadratic.

128



From Theory to Practice

appropriate year. You now have another play-book puzzle—spot the differ-
ence between the two pictures. This is, of course, a serious problem; we may
notice, say, that ci999 is ‘a bit’ lower than c;985—but is it noticeably lower, or
are the two numbers ‘about the same’? Readers trained in statistical theory
will have detected in this a long and imprecise way round to introducing
tests of significance.

However, this thought experiment reveals that the problem at issue is a bit
broader than just banging out some standard statistical significance tests.
Given that we are looking at the difference between the observed value
of an inequality measure and some base value (such as an earlier year’s
inequality) there are at least three ways in which the word ‘significance’ can
be interpreted, as applied to this difference:

e statistical significance in the light of variability due to the sampling
procedure;

e statistical significance in view of the arbitrary grouping of observations;
* social or political significance.

The last of these three properly belongs to the final section of this chapter.
As far as the first two items are concerned, since space is not available for
a proper discussion of statistical significance, I may perhaps be forgiven for
mentioning only some rough guidelines—further reference may be made to
the Technical Appendix and the notes to this chapter (page 193).

Let us suppose that we are dealing with sampling variability in an
ungrouped distribution (unfortunately, rigorous analysis with grouped data
is more difficult). The numbers yi, y2, 3, ..., yu are regarded as a sample of
independent random observations. We perform the calculations described
earlier and arrive at a number . An essential piece of equipment for apprais-
ing this result is the standard error’ of J which, given various assumptions
about the underlying distribution of y and the manner of drawing the
sample, can be calculated from the observations yi, ..., y,. Since the ys are
assumed to be random, the number /| must also be taken to be an observa-
tion on a random variable. Given the theoretical distribution of the ys it is
possible to derive in principle the distribution of the values of the computed
number . The standard deviation or square-root-of-variance of this derived
distribution is known as the standard error of /. Given this standard error an

7" A couple of technical words of warning should be noted. Firstly, in an application we ought
to examine carefully the character of the sample. If it is very large by comparison with the whole
finite population, the formulas in the text must be modified; this is in fact the case in my worked
example—although the qualitative conclusions remain valid. If it is non-random, the formulas
may be misleading. Secondly for some of the exercises carried out we should really use standard
error formulas for differences in the Js; but this is a complication which would not affect the
character of our results.
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answer can be provided to the kind of question raised earlier in this section:
if the difference c19990 — C19g5 is at least three times the standard error for c,
then it is ‘quite likely’ that the change in inequality is not due to sampling
variability alone and that thus this drop is significant.

Some rule-of-thumb formulas for the standard errors are readily obtainable
if the sample size, n, is assumed to be large, and if you are prepared to
make some pretty heroic assumptions about the underlying distribution
from which you are sampling. Some of these are given in Table 5.3, but
I should emphasize that they are rough approximations intended for those
who want to get an intuitive feel for the significance of numbers that may
have been worked out by hand.

I would like to encourage even those who do not like formulas to notice
from the above expressions that in each case the standard error will become
very small for a large sample size n. Hence for a sample as large as that in
Table 5.1, the sampling variability is likely to be quite small in comparison
with the range of possible values of the inequality measure on account of
the grouping of the distribution. A quick illustration will perhaps suffice.
Suppose for the moment that the compromise value of ¢ =5.915 given in
Table 5.2 were the actual value computed from ungrouped data. What would
the standard error be? Noting that the sample size is about 136 million, the
standard error is about

1+2 x 5.9152
5.915 STt —4.273x 1073,
“\ 7136 x 106 x

We can be virtually certain that sampling variability introduces an error of
no more than three times this on the ungrouped value of c. Contrast this
with the gap between the upper bound and lower bound estimates found
from Table 5.2 as 6.352 — 5.684 = 0.668. Hence for this kind of distribution,

Table 5.3. Approximation formulas for standard errors of
inequality measures

Standard error  Assumed underlying

Inequality measure approximation  distribution*
coefficient of variation ¢ ¢/ % normal
relative mean deviaton M,/ €=M normal

Gini coefficient G G,/ 28088 symmetrical
variance of logarithms v v1y/2 lognormal

* See Kendall et al. (1994), sec 10.5.
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Table 5.4. Atkinson index and coefficient of variation: Internal Revenue Service 1987
to 2006

C Ay

Lower Bnd  Compromise  Upper Bnd  Lower Bnd ~ Compromise  Upper Bnd

1987 2.046 2.222 2.538 0.646 0.659 0.687
1995 2.281 2.481 2.838 0.690 0.702 0.725
2001 2.612 2.821 3.199 0.717 0.726 0.746
2006 5.684 5915 6.352 0.760 0.784 0.828

the grouping error may be of the order of five hundred times as large as the
sampling variability.

As we have noted, the grouping variability may be relatively large in
comparison to the value of the measure itself. This poses an important ques-
tion. Can the grouping variability be so large as to make certain inequality
measures useless? The answer appears to be a qualified ‘yes’ in some cases.
To see this, let us look at two inequality measures.

First, take the coefficient of variation that we have just been discussing.
From Table 5.2 we know that the value of ¢ in 2006 lies in the range (5.684,
6.352)—see the bottom row of Table 5.4. The corresponding values of ¢ for
some earlier years are also shown on the left-hand side of Table 5.4. It is
immediately clear that, even though the (ci, cy) gap is large in every year,
inequality in 2006 was unquestionably higher than in any of the other three
years shown.® Figure 5.15 illustrates why this is so: it is clear to the naked
eye that the Lorenz curve for 1987 dominates that for 2006; even if we
drew in the upper-bound and lower-bound Lorenz curves for each year this
conclusion will not go away. By contrast we cannot immediately say that,
say, ¢ was higher in 1995 than 1987: the lower-bound, compromise, and
upper-bound estimates of ¢ all grew by about 11.5 per cent over the period
but, in either year, the (cy, cy) gap (as a proportion of the compromise value)
is over 22 per cent.

Next consider Atkinson’s measure A, for the same data. The lower and
upper bounds and compromise value are represented pictorially in Fig. 5.16.
We can see that the upper-lower gap increases with & but that it stays
relatively modest in size. So it is unsurprising to see that the Atkinson
index (with & =2), with one minor exception, provides an unambiguous
comparison between any pair of the years given in Table 5.4. So it is still

8 The lower-bound and compromise values of ¢ more than double from 2001 to 2006. Here
I am making the assumption that the top interval is closed as in case (2) of Table 5.2. Had we
assumed that the top interval had a Pareto tail (case 1) then we would have found that ¢ was
unbounded in each of the four years—see the ‘Inequality calculator’ on the website.
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Table 5.5. Individual distribution of household net
per capita annual income. Czechoslovakia 1988

Income range Number of persons Mean
(crowns)
1-9 600 176,693 8,421
9 601-10 800 237,593 10,290
10 801-12 000 472,988 11,545
12 001-13 200 640,711 12,638
13 201-14 400 800,156 13,845
14 401-15 600 1,003,174 15,036
15 601-16 800 1,160,966 16,277
16 801-18 000 1,257,160 17,420
18 001-19 200 1,277,633 18,610
19 201-20 400 1,104,486 19,814
20 401-21 600 974,158 21,008
21 601-22 800 871,624 22,203
22 801-24 000 738,219 23,406
24 001-25 200 665,495 24,603
25 201-26 400 579,495 25,810
26 401-27 600 490,502 26,998
27 601-28 800 434,652 28,217
28 801-30 000 367,593 29,419
30 001-31 200 315,519 30,616
31 201-32 400 280,371 31,804
32401-32 400 245,630 32,976
33 601-34 800 206,728 34,176
34 801-36 000 163,851 35,418
36 001-38 400 257,475 37,154
38 401& over 605,074 48,338
All ranges 15,327,946 21,735

Source: see Appendix B

true to say that the IRS income distribution of 2006 is more unequal than
that of 1987, just as we found for ¢ and just as we saw in Fig. 5.15.

However, Fig. 5.16 in some respects under-represents the problem: the
principal reason for this is that in analysing the inequality represented by the
data in Table 5.1 we had to drop the first interval which contained a negative
mean, so that only incomes over $1,000 were left in the data. Consider
instead the Czechoslovakian data presented in Table 5.5.° Notice that the
first interval is quite wide and has a lower limit of 1 crown per year. If we plot
the Atkinson index for these data and drop the first interval (as we did for
the American data) it appears that inequality is quite low—see the picture in
Fig. 5.17—and this picture is in fact borne out by other inequality measures
as well as A,. But if we attempt to take account of all the data—including
the first interval—then the picture of Fig. 5.18 emerges. Notice that not only
is the upper-bound estimate of inequality seriously affected for £> 1 (which

9 Taken from Atkinson and Micklewright (1992) Table CSI1.
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we might have guessed) but so too is the compromise value. Obviously
truncating the data (or manipulating in some other way the assumption
about a; which is causing all the trouble) is convenient, but in one sense this
is to avoid the problem, since we are deliberately ignoring incomes in the
range where our inequality measure is designed to be particularly sensitive.
The unpalatable conclusion is that because of grouping error (and perhaps
sampling error too) either we shall have to discard certain sensitive measures
of inequality from our toolkit on empirical grounds, or the distribution must
provide extremely detailed information about low incomes so that measures
with high inequality aversion can be used, or the income distribution figures
will have to be truncated or doctored at the lower end in a way which may
reduce their relevance in the particular area of social enquiry.

5.4 Shortcuts: fitting functional forms°

And now for something completely different. Instead of attempting to work
out inequality statistics from empirical distribution data directly, it may be
expedient to fit a functional form to the raw data, and thus compute the
inequality statistics by indirect means. The two steps involved are as follows.

e Given the family of distributions represented by a certain functional
form, estimate the parameter values which characterize the particular
family member appropriate to the data.

e Given the formula for a particular inequality measure in terms of the
family parameters (see the Technical Appendix), calculate the inequality
statistics from the parameter estimates obtained in step 1.

For the Pareto distribution, the first step involves estimation of the para-
meter a from the data, and the second step might be to write down the value
of the Gini coefficient, which for the Pareto is simply

1
G_Za—l

(see page 156).

For the lognormal distribution, the first step involves estimation of 2.
Since the second step is simple once you have the formula (it usually
involves merely an ordinally equivalent transformation of one of the para-
meters), [ shall only consider in detail methods relating to the first step—the
estimation of the parameters.

10 This section contains material of a more technical nature which can be omitted without
loss of continuity.
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Two words of warning. Up to now we have used symbols such as j, V, etc.
to denote the theoretical mean, variance, etc., of some distribution. From
now on, these symbols will represent the computed mean, variance, etc.,
of the set of observations that we have under consideration. Although this
is a little sloppy, it avoids introducing more symbols. Also, note that often
there is more than one satisfactory method of estimating a parameter value,
yielding different results. Under such circumstances it is up to the user to
decide on the relative merits of the alternative methods.

Let us move straightaway on to the estimation of the parameters of the
lognormal distribution for ungrouped and for grouped data.

If the data are in ungrouped form—that is we have n observations,
Vi, Y2, ..., ya—then on the assumption that these come from a population
that is lognormal, it is easy to use the so-called method of moments to
calculate estimates i, G* for the lognormal distribution. Calculate the mean,
and the Herfindahl index (the sum of the squares of the shares—see page 59)
for these n incomes:

n y 2
H=Y" [—,] :
i LY
Then we find:

G2 =log(nH)

1.
p=1og(y) — 502~

While this is very easy, it is not as efficient!! as the following method.

An alternative procedure that is fairly straightforward for ungrouped data
is to derive the maximum likelihood estimates, [, &%. To do this, transform
all the observations y1, y, ..., ¥, to their logarithms x;, xo, ..., x,. Then cal-
culate:

1 n
fr P in
i=1

1l
[
—
2
|
=
—_
)

It is evident that [ is simply log(y*)—the logarithm of the geometric mean,
and that &2 is v1, the variance of the logarithms defined relative to y*.

In the case of grouped data, maximum likelihood methods are available,
but they are too involved to set out here. However, the method of moments

11 The standard errors of the estimates will be larger than those for the maximum likelihood
procedure (which is the most efficient in this case).
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can be applied similarly to the way it was in the ungrouped case, provided
that in the computation of H an appropriate correction is made to allow for
the grouping of observations.

We shall go straight on now to consider the estimation of the parameters
of the Pareto distribution, once again dealing first with ungrouped data.

For the method of moments, once again arrange the n observations
Vi, V2. ..., ¥n in Parade order yuy, ¥2). ..., Y. (@s on page 114). It can be
shown that the expected value of the lowest observation y), given the
assumption that the sample has been drawn at random from a Pareto dis-
tribution with parameters a, is any/[an — 1]. Work out the observed mean
income y. We already know (from Eage 93) the expected value of this, given
the Pareto assumption: it is ay/[a — 1]. We now simply equate the sample
observations (y(1) and ) to their expected values:

any
YO = on—1
_ ay
Y=a—1

Solving these two simple equations in two unknowns a, y, we find the
method of moments estimates for the two parameters:

- _ Y
CP
Y= Ym

However, this procedure is not suitable for grouped data. By contrast,
the ordinary least squares method for estimating a can be applied whether
the data are grouped or not. Recall the point in Chapter 4 that if y is any
income level, and P is the proportion of the population with that income or
more, then under the Pareto distribution, a linear relationship exists between
log(P) and log(y), the slope of the line being a. Indeed we may write this as

p=z—ax

where p represents log(P), x represents log(y), and z gives the intercept of
the straight line.

Given a set of ungrouped observations y;, yz, .. ., ¥, arranged say in ascend-
ing size order, it is easy to set up the estimating equation for a. For the first
observation, since the entire sample has that income or more (P = 1), the
relevant value of p is

p1=1og(1) =0.

137



Measuring Inequality

For the second observation, we have

1
p2 =log (1 — ﬁ)

2
p3 =log (1 — ﬁ)

and for the very last we have

and for the third

which gives a complete set of transformed values of the dependent vari-
able.!? Given the values of the independent variable x;, x, ..., X, (calculated
from the y-values) we may then write down the following set of regression
equations:

P1=Z—ax;+e;

P2=Z—axy+ex

Pn=2Z—ax,+ey,
where ey, ez, ..., e, are error terms. One then proceeds to obtain least squares
estimates of a and z in the usual way by minimizing the sum of the squares
of the es.

Of course you are at liberty to fit a lognormal, Pareto or some other
function to any set of data you like, but this is only a useful occupation
if a ‘reasonable’ fit is obtained. What constitutes a ‘reasonable’ fit?

An answer that immediately comes to mind if you have used a regression
technique is to use the correlation coefficient R2. However, taking a high
value of R? as a criterion of a satisfactory fit can be misleading when
fitting a curve to a highly skewed distribution, since a close fit in the tail
may mask substantial departures elsewhere. This caution applies also to
line-of-eye judgements of suitability, especially where a log-transformation

12 In the case of grouped data, let f; be the observed proportion of the population lying in the
ith income interval, and take x; to be log(a;), that is the logarithm of the lower bound of the
interval, for every interval i = 1, 2, 3,...k. The p;s are then found by cumulating the f;s upwards
from interval i and taking logarithms, thus:

p1 =1og(1)=0
P2 =10g(fa+ f3+ fat. ..+ ficr + fi)
Pz=10g(fs+f4 +fk—1+fk)
ps =1og(fi+ +fk1+fk)
Dr-1 = log( fie1 + fi)
Pr = 1og(fi)-
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has been used, as in the construction of Fig. 4.11. For small samples, standard
‘goodness-of-fit’ tests such as the y?-criterion may be used, although for
a large sample size you may find that such tests reject the suitability of
your fitted distribution even though on other grounds it may be a perfectly
reasonable approximation.

An easy alternative method of discovering whether a particular formula
is ‘satisfactory’ can be found using an inequality measure. Let us look at
how it is done with grouped data and the Gini coefficient—the argument is
easily extended to other inequality measures and their particular concept of
‘distance’ between income shares. Work out Gy, and Gy, the lower and upper
limits on the ‘true’ value of the Gini. Given the fitted functional form, the
Pareto let us say, we can calculate G, the value of the Gini coefficient on
the supposition that the data actually follow the Pareto law. If

GL=Gp =Gy

then it is reasonable to accept the Pareto functional form as a close approx-
imation. What we are saying is that according to the concept of ‘distance
between incomes’ implied by this inequality measure, it is impossible to
distinguish the theoretical curve from the ‘true’ distribution underlying
the observations. Of course, a different concept of distance may well pro-
duce a contradictory answer, but we have the advantage of specifying in
advance the inequality measure that we find appropriate, and then testing
accordingly. In my opinion this method does not provide a definitive test;
but if the upper-and-lower-limit criterion is persistently violated for a num-
ber of inequality measures, there seems to be good reason for doubting the
closeness of fit of the proposed functional form.

Let us apply this to the Internal Revenue Service (IRS) data of Table 5.1
and examine the Pareto law. Since we expect only higher incomes to follow
this law, we shall truncate incomes below $25,000. First of all we work out
from column 6 of Table 5.1 the numbers p; as (the transformed values of the
dependent variable) by the methods just discussed, and also the logarithms
of the lower bounds g; given in column 1 of Table 5.1, in order to set up the
regression equations. Using ordinary least squares on these last 13 intervals
we find our estimate of a as 1.496 with a standard error of 0.0072, and
R? =0.996. Figure 5.19 is the Pareto diagram for this problem; the solid
line represents the regression for the top 13 intervals and the broken line
represents the regression obtained using all the data. Using the formula for
the Gini coefficient on the hypothesis of the Pareto distribution (see page
135 above) we find

1
Gp=— =0502.
= %1496 -1
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Now, noting that the lower and upper bounds on the Gini for incomes
over $25,000 are Gp =0.472 and Gy =0.486 respectively, it is clear that
G lies outside these limits; further experimentation reveals that the same
conclusion applies if we choose any point of truncation other than $25,000.
So, according to the Gini criterion, the Pareto distribution is in fact a poor
representation of the upper tail in this case, even though it looks as though it
‘should be’ a good fit in Fig. 5.19. But for other years, the hypothesized Pareto
tail looks quite good. Consider the situation in 1987, depicted in Fig. 5.20.
Following the same procedure as before we truncate the data to use only the
top 13 intervals (incomes above $15,000 at 1987 prices, which works out at
incomes above $26,622 in 2006 prices). Now we find the estimated a to be
1.879 (s.e. = 0.0092, R? = 0.992) so that

1

In this case G, = 0.3554 and Gy = 0.3628 and G lies within these bounds.
So the Pareto distribution certainly seems to be an acceptable fit for the top
13 income classes in 1987. In passing, it is interesting to see how dramatically
inequality increased over the period 1987 to 2006—a point which we had
already noted from Fig. 4.12.

Two points should be noted from this exercise. First, just relying on judge-
ment by eye may be unsatisfactory—the Pareto tail yielded a misleading
estimate of the Gini coefficient in 2006. Second, had we relied on the R?
criterion alone, however, we would also have been seriously led astray. If we
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F1G. 5.19. Fitting the Pareto diagram for the data in Table 5.1
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F1G. 5.20. Fitting the Pareto diagram for IRS data in 1987 (values in 2006 dollars)

reworked the 2006 calculations for all incomes above $1,000 we would still
have a high R? (0.918) but a much lower value of a (1.185); the implied
value of G;; = 0.616 lies well above the upper bound Gy = 0.602 recorded for
this group of the population in Table 5.2, thus indicating that the Pareto
distribution is in practice a bad fit for all incomes above $1,000. It is easy to
see what is going on in the Pareto diagram, Fig. 5.19: as we noted the solid
regression line depicts the fitted Pareto distribution for $15,000 on which
we based our original calculations; if we were to fit a straight line to all the
data (the broken line), we would still get an impressive R?> because of the
predominance of the points at the right-hand end, but it is obvious that the
straight line assumption would now be rather a poor one. (This is in fact
characteristic of income distribution data: Compare the results for IRS 1987
in Fig. 5.20 and for the UK data in Fig. 4.5.)

It seems that we have discovered three main hazards in the terrain covered
by this section.

e We should inspect the statistical properties of the estimators involved in
any fitting procedure.

e We should check which parts of the distribution have had to be trun-
cated in order to make the fit ‘work’.

* We must take care over the ‘goodness-of-fit’ criterion employed.

However, in my opinion, none of these three is as hard as the less technical
problems which we encounter next.

141



Measuring Inequality

5.5 Interpreting the answers

Put yourself in the position of someone who is carrying out an independent
study of inequality, or of one examining the summary results of some recent
report on the subject. To fix ideas, let us assume that it appears that inequal-
ity has decreased in the last five years. But presumably we are not going to
swallow any story received from a computer print-out or a journal article
straightaway. In this final and important puzzle of ‘colour the picture’, we
will do well to question the colouring instructions which the presentation
of the facts suggests.

What cardinal representation has been used?

Has the cake shrunk?

Is the drop in inequality an optical illusion?

How do we cope with problems of non-comparability?

Is the trend toward equality large enough to matter?

INEQUALITY CHANGE: A CHECK-LIST

Although the queries that you raise in the face of the evidence may be far
more penetrating than mine, I should like to mention some basic questions
that ought to be posed, even if not satisfactorily resolved. In doing so I shall
take as understood two issues that we have already laboured to some extent:

 that agreement has been reached on the definition of ‘income’ and other
terms and on the choice of inequality measure(s);

 that we are satisfied that the observed changes in inequality are ‘signifi-
cant’ in a statistical or formal sense as discussed in this chapter.

Each of these questions is of the sort that merits several journal articles in
its own right. That being said, I am afraid that you will not find that they are
asked often enough.

What Cardinal Representation Has Been Used?

The retentive reader will recall from the first chapter that two inequality
measures, although ordinally equivalent (so that they always rank any list
of social states in the same order), might not have equivalent cardinal
properties, so that percentage changes in inequality could appear different
according to the two measures.
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As examples of this, take the Herfindahl index H and the coefficient of
variation c. Since

for the same population size H and ¢ will always rank any pair of states in
the same order. However, the relative size of any difference in inequality will
be registered differently by H and by c. To see this, re-examine Table 5.1
where we noted that the minimum and maximum values of ¢ were 5.684
and 6.352, which means that there is a difference in measured inequality
of about 12 per cent which is attributable to the effect of grouping. If we
did the same calculation for H, we would find that the gap appeared to be
much larger, namely 22 per cent. The measure H will always register larger
proportional changes in inequality than ¢, as long as c lies above one (exactly
the reverse is true for ¢ less than one).

What this implies more generally is that we should not be terribly
impressed by a remark such as ‘inequality has fallen by x per cent according
to inequality measure /' unless we are quite clear in our own minds that
according to some other sensible and ordinally equivalent measure the
quantitative result is not substantially different.!?

Has the Cake Shrunk?

Again you may recollect that in Chapter 1 we noted that for much of the
formal work it would be necessary to take as axiomatic the existence of a
fixed total of income or wealth to be shared out. This axiom is implicit in
the definition of many inequality measures so that they are insensitive to
changes in mean income and, insofar as it isolates a pure distribution prob-
lem, seems quite reasonable. However, presuming that society has egalitarian
preferences,'* the statement ‘inequality has decreased in the last five years’
cannot by itself imply ‘society is now in a better state’ unless one is quite sure
that the total to be divided has not drastically diminished also. Unless society
is very averse to inequality, a mild reduction in inequality accompanied by
a significant drop in average income may well be regarded as a definitely
retrograde change.

We can formulate this readily in the case of an inequality measure that
is explicitly based upon a social welfare function: by writing down the
social welfare function in terms of individual incomes 1, y»,..., yn we

13 A technical note. It is not sufficient to normalize so that the minimum value of J is 0, and
the maximum value 1. For, suppose /] does have this property, then so does /” where m is any
positive number, and of course, / and J™ are ordinally, but not cardinally, equivalent.

4 This is implied in the use of any inequality measure that satisfies the weak principle of
transfers.
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are specifying both an inequality ranking and a trade-off between average
income and an inequality index consistent with this ranking.!> Atkinson’s
measure A, and the social welfare function specified on page 41 form a
good example of this approach: by the definition of A,, social welfare is an
increasing function of [1 — A.]. Hence a fall in inequality by one per cent
of its existing value will be exactly offset (in terms of this social welfare
function) if average income also falls by an amount
AS

&min = 1—7145

Likewise, a rise in inequality by one per cent of its existing value will
be wiped out in social welfare terms if average income grows by at least
this same amount. Call this minimum income growth rate gmin: obviously
gmin increases with A, which in turn increases with &. So, noting from
Fig. 5.16 that for € = %, A, =0.25, we find that on this criterion gmin = 0.33:
a one per cent reduction in inequality would be exactly wiped out by a
0.33 per cent reduction in income per head. But if € =3, A, =0.833, and
a one per cent reduction in inequality would need to be accompanied by
a 5 per cent reduction in the cake for its effect on social welfare to be
eliminated. Obviously all the remarks of this paragraph apply symmetrically
to a growing cake accompanied by growing inequality.

I should perhaps stress again that this is a doubly value-laden exercise:
first the type of social welfare function that is used to compute the equality-
mean income trade-off is itself a judgement; then the choice of € along the
horizontal axis in Fig. 5.21 is obviously a matter of social values too.

Is the Drop in Inequality an Optical Illusion?

Unfortunately this may very well be so if we have not taken carefully
into consideration demographic, social, and occupational shifts during the
period. Some of these shifts you may want to include within the ambit of
inequality anyway, but the treatment of others is less clear. Let us follow
through two examples.

15" Actually, this requires some care. Notice that the same inequality measure can be consistent
with a variety of social welfare functions. For example, if we do not restrict the SWF to be additive,
the measure A, could have been derived from any SWF of the form:

—~_1
— €

n 1
sy
i=1

which means that virtually any trade-off between equality and income can be obtained, depend-
ing on the specification of ¢. Pre-specifying the SWF removes this ambiguity, for example, if
we insist on the additivity assumption for the SWF then ¢ = constant, and there is the unique
trade-off between equality and mean income.
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FI1G. 5.21. The minimum income growth to offset a 1 per cent growth in inequality

First, suppose there is higher inequality of earnings among doctors than
among dockers, that relative remuneration and inequality within occupa-
tions have not altered over time, but that there are now relatively more dock-
ers. Inequality in the aggregate will have decreased, although the inequality
of earnings opportunity facing a new entrant to either occupation will have
remained unchanged. Whether or not one concludes that inequality has
‘really’ gone down is in large part a matter of interpretation, though my
opinion is that it has done so.

However, I would not be so confident in the case of the second example:
Suppose income inequality within age groups increases with the age of the
group (this is very often true in practice). Now imagine that the age distribu-
tion is gradually shifting in favour of the young, either because the birth rate
has been rising, or because pensioners are dying earlier, but that inequality
within age groups remains unaltered. It will appear that inequality is falling,
but this is due entirely to the demographic change. Indeed, if your chances
of physical survival are closely linked to your income, the appearance that
inequality is decreasing can be quite misleading, since the death rate may
have been substantially boosted by the greater inequality among the old.

There are obviously several social and economic factors that ought to be
considered in a similar way. Among these are changes in the frequency
of marriage and divorce, shifts (possibly cyclical) of the numbers of wives,
children, and other part-time or temporary workers in the labour force, and
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price changes that affect people’s real incomes in different ways depending
on their position in the Parade of incomes.

How Do we Cope with Problems of Non-Comparability?

This question follows naturally from the last and can be approached in
two ways: non-comparability of types of income, and non-comparability of
groups of income recipients. In the first case we may well want to examine,
say, the inequality of labour earnings, of income from property and the
relationship of these quantities to overall inequality. We evidently need to
have a detailed breakdown of the income distribution by both income type
and recipient—information that is usually hard to come by. Furthermore the
mechanics of the relationship between inequality of components of income
and inequality of income as a whole are by no means straightforward—see
the Technical Appendix.

In the second case, while examining the effect of demographic and other
shifts, we may conclude that crudely lumping together different groups
of the population and thus treating them as comparable in every way is
unwarranted. In order to handle this difficulty, it helps to have an inequality
measure that can be conveniently decomposed into a component represent-
ing inequality within groups, and a component giving inequality between
groups. It would look something like this:

Lotal = wily + walz + ...+ widg + Ipetween

where [0ty is the value of inequality in the aggregate, I1, I, ..., Ix is the value
of inequality within subgroup 1, 2, ..., k respectively, wi, wa, ..., wx form a
set of weights, and Ipetween 1S the between-group inequality, found by assum-
ing that everyone within a particular group has the same income. The details
of this decomposition, and in particular the specification of the weights
for different inequality measures, can be found in the Technical Appendix.
Given different problems of non-comparability of income recipients there
are, broadly speaking, two courses of action open to us, each of which I shall
illustrate by an example.

First, suppose that each group corresponds to a particular family-size class,
with the family taken as the fundamental income-receiving unit. Then we
may be able to avoid the problem of non-comparability between groups by
adjusting incomes to an ‘adult-equivalent’ basis, as mentioned earlier. If the
weights w depend on the shares of each group in total income, then such
an adjustment will involve increasing the weights for a group containing
small families, decreasing the w for a group of large families. The value
of Ipetween Would have to be recomputed for average ‘per-adult equivalent’
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income in each group. A similar procedure can be adopted in the case of
an aggregation of economically diverse nations within a political grouping
such as the European Union; because of artificiality of exchange rates and
other reasons listed on page 111, average income in each nation and thus
the weights for each nation may have to be adjusted.

In the second place, there may be little point in trying to adjust Ipetween
since ‘between-group’ inequality may be intrinsically meaningless. A case
can be made for this in examining income distributions that are differ-
entiated by age group. Although the measured inequality within an age
group can be seen as reflecting a genuine disparity among people’s economic
prospects, the between-group component merely reflects, for the most part,
the fact that people’s incomes are not uniform over their lives. The expres-
sion Ipetween May thus not reflect inequality in the conventional sense at all.
This being so, the problem of non-comparability of people at different points
in the lifecycle can be overcome by dropping the Ipetween COmponent and
adopting some alternative weighting scheme that does not involve income
shares (perhaps, for example, population shares instead) so as to arrive at an
average value of inequality over the age groups.

Is the Trend toward Equality Large Enough to Matter?

The discussion of significance in its formal, statistical sense leaves some
unsettled questions. All that we glean from this technical discussion are
guidelines as to whether an apparent change in inequality could be
accounted for simply by sampling variability or by the effect of the grouping
of observations in the presentation. Whether a reduction in inequality that
passes such significance tests is then regarded as ‘important’ in a wider
economic or social sense is obviously a subjective matter—it depends on the
percentage change that you happen to find personally exciting or impressive.
However, I do not think that we have to leave the matter there. In the
case of economic inequality there are at least two ways of obtaining a crude
independent check.

The first method is to contrast the historical change with some other
easily measured inequality difference. An interesting exercise is to compare
the magnitude of the reduction in inequality in the population as a whole
during a number of years with the change in inequality over the lifecycle as
observed for the age groups in any one year. Alternatively, we might consider
the secular change in inequality alongside the apparent!® redistribution

16 The qualification ‘apparent’ is included because, as we noted on page 112, the observed
distribution of income before tax is not equivalent to the theoretical distribution of income
‘without the tax’.
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achieved in any one year by a major government policy instrument, such
as the income tax. Neither of these comparisons yields an absolute standard
of economic significance, of course, but each can certainly put a historical
trend into a clear current perspective.

The second device is applicable to measures based on social welfare
functions, and may be taken as an extension of the earlier shrinking cake
question. We noted there that a 1 per cent reduction in A, is equivalent in
social welfare terms to a A./[1 — A.]% increase in income per head. So let us
suppose that, for some value of ¢, at the beginning of the period A, = 0.5 (so
that A./[1 — A.] =1). Then if economic growth during the period raised per
capita income by 10 per cent, an accompanying fall of A, to say 0.45 would
be quite impressive, since the gain to society through reduction in inequality
would be as great as the benefit to society of the increase in average living
standards. However, the procedure in general obviously depends on your
acceptance of the social welfare function approach, and the particular result
depends on the inequality aversion which you are prepared to impute to
society.

5.6 A sort of conclusion

Finding and asking the right questions is an irksome task. But it is evidently
a vital one too, since our brief enquiry has revealed several pitfalls which
affect our understanding of the nature of inequality and the measurement
of its extent and change. It has been persuasively argued by some writers
that inequality is what economics should be all about. If this is so, then
the problem of measurement becomes crucial, and in my opinion handling
numbers effectively is what measuring inequality is all about.

Technical progress in computing hardware and statistical software has
greatly alleviated the toil of manipulation for layman and research worker
alike. So the really awkward work ahead of us is not the mechanical process-
ing of figures. It is rather that we have to deal with figures which, instead
of being docile abstractions, raise fresh challenges as we try to interpret
them more carefully. However, the fact that the difficulties multiply the
more closely we examine the numbers should reassure us that our effort
at inequality measurement is indeed worthwhile.

‘Problems worthy

Of Attack

Prove their worth

By hitting back.’
Piet Hein.
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5.7 Questions

1. (a) Use the file “‘World Bank data’ on the website to provide an inequal-
ity ranking of countries according to (i) the share of the bottom
20 per cent (ii) the share of the top 20 per cent and (iii) the Gini
coefficient.

(b) Use the information on shares in the file to compute an estimate
of the Gini coefficient: why would one expect this estimate to be
different from that provided in the file?

(c) Some of the datasets in this compilation (taken from World Bank
2004) are from income surveys and some from surveys of expen-
diture: which type of survey would you expect to result in higher
inequality? (See World Bank 2005, page 38.)

2. The data in Table 5.6 (taken from Jones 2008) show the distribution
by decile groups according to five different concepts of income corre-
sponding to five successive notional stages of government intervention.
Draw the Lorenz curves and generalized Lorenz curves. What effect
on income inequality does each tax or benefit component appear to
have? Does the distribution of final income dominate the distribution
of original income according to the principles in Theorem 3 on page
477 (See ‘taxes and benefits’ on the website for a copy of the data and
a hint at the answers; see Hills 2004, pp. 90-94 for a discussion of the
practical issues relating to these data. See Wolff and Zacharias 2007 for
the corresponding issue in the USA.)

3. Consider an income distribution in which there are two families. Family
1 contains one person with an income of $10, 000; family 2 contains
two persons with a combined income of $15,000. Assume that the
formula for the number of equivalent adults in a family of size s is given
by s where 7 is an index of sensitivity to size. What situations do the
cases = 0 and 7 = 1 represent?

(a) Compute the generalized entropy measure (f = —1) for this econ-
omy on the assumption that each family is given an equal weight
and that income is family income per equivalent adult. Do this for
a range of n-values from O to 1 and plot the results on a graph.

(b) Repeat the exercise for the cases  =0.5 and 0 = 2. Do you get the
same relationship between measured inequality and 7?

(c) Repeat the exercise for the case where each family is weighted
according to the number of individuals in it. Does the re-weighting
affect the results? (See the file ‘Equivalence scales and weighting’ on
the website for the answers. See also Coulter et al. 1992b for further
discussion.)

4. Suppose you have income data which has been grouped into three
intervals: ($0,$2,000), ($2,000,$4,000), ($4,000,$6,000). There are 1,000

149



Table 5.6. Average income, taxes, and benefits by decile groups of all households. UK 1998-9

st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

No of h’holds 2464 2465 2469 2463 2471 2463 2465 2469 2465 2470
Average per household, £ per year

Original income £2,119 £3,753 £5,156 £9,365  £14,377  £18,757  £23,685  £29,707  £36,943 £65,496
Cash benefits £4,262 £5,351 £5,552 £4,794 £3,907 £2,979 £2,506 £1,551 £1,252 £990
Gross income £6,381 £9,104  £10,708  £14,159  £18,284  £21,736  £26,191 £31,258  £38,195 £66,486
Dir taxes -£803  -£1,029 -£1,269 -£2,144 -£3,185 -£4,183 -£5,414 -£6,855 -£8,760  -£16,559
Disp income £5,578 £8,075 £9,439  £12,016  £15,099  £17,554  £20,777  £24,403  £29,434 £49,927
Indirect taxes -£2,238  -£2,150 -£2,365 -£2,940 -£3,587 -£4,055 -£4,611 -£5,065 -£5,527 -£7,153
Post-tax income £3,340 £5,925 £7,074 £9,076  £11,511 £13,498  £16,166  £19,338  £23,908 £42,774
Benefits in kind £4,604 £3,771 £3,501 £3,294 £3,457 £3,219 £2,787 £2,468 £2,187 £2,015
Final income £7,945 £9,696  £10,575  £12,370  £14,969  £16,717  £18,953  £21,806  £26,095 £44,789

Source: Office for National Statistics
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individuals in each interval and the mean of each interval is at the
midpoint. Draw the lower-bound and upper-bound Lorenz curves as
described on page 125.

. Compute the mean and variance for a split histogram distribution over
an interval [a, b]: i.e. a distribution for which the density is a constant
fifora <y <jyand f; for y <y < b. Given the US data in Table 5.1 (see
file ‘IRS income distribution’ on the website) find the numbers f; and
f2 for each interval.

. Show that you can write the formula for Gini coefficient on page 114
as G = Zf;l w; i) where the wy, wy, ..., w, are weights for each income
from the lowest (i = 1) to the highest (i = n).

(a) What is the formula for w;?

(b) If there is a small income transfer of Ay from person i to person j
what is the impact on G according to this formula?

(c) Suppose a six-person economy has income distribution A given in
Table 3.3 (page 65). Use your solution for Ay to evaluate the effect
on Gini of switching to distribution B for the East, for the West, and
for the economy as a whole.

(d) Suppose a six-person economy has income distribution A given in
Table 3.4. Again use your solution for Ay to evaluate the effect on
Gini of switching to distribution B for the East, for the West, and for
the economy as a whole. Why do you get a rather different answer
from the previous case?

Table 5.7. Observed and expected frequencies of household income per
head, Jiangsu, China

1980 1983 1986

y Obs Exp y Obs Exp y Obs Exp
0 12 3.5 0 5 0.3 0 3 1.1

80 33 30.3 100 21 10.9 100 16 16
100 172 184.8 150 81 65.8 150 73 65.3
150 234 273.8 200 418 385.2 200 359 3554
200 198  214.1 300 448  463.6 300 529  561.9
250 146 1333 400 293 305.1 400 608 598.4
300 190 145.2 500 212 247.8 500 519 503.2
800 15 16 600 657 672.8
1,000 5 3.3 800 346 3304
1,000 237 2483
1,500 40 38.4
2,000 13 8.8

5,000

all ranges 985 985 1,498 1,498 3,400 3,400

y: lower limit of income interval (yuan pa)

Source: Statistical Office, Jiangsu Province, Rural Household Budget Survey.
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7. For the same dataset as in Question 5 verify the lower-bound and the
upper-bound estimates of the Atkinson index Ay s given in Table 5.2.

8. Apply a simple test to the data in Table 5.7 (also available in file ‘Jiangsu’
on the website) to establish whether or not the lognormal model is
appropriate in this case. What problems are raised by the first interval
here? (Kmietowicz and Ding 1993).
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APPENDIX A

Technical Appendix

A.1T Overview

This appendix assembles some of the background material for results in the main text
and covers some important related points that are of a more technical nature. The
topics covered, section by section, are as follows:

¢ Standard properties of inequality measures both for general income distributions
(discrete and continuous) and for specific distributions.

® The properties of some important standard functional forms of distributions,
focusing mainly upon the lognormal and Pareto families.

¢ Interrelationships amongst important specific inequality measures.
¢ Inequality decomposition by population subgroup.

¢ Inequality decomposition by income components.

¢ Negative incomes.

¢ Estimation problems for (ungrouped) microdata.

* Estimation problems for grouped data, where the problem of interpolation
within groups is treated in depth.

¢ Using the website to work through practical examples.

A.2 Measures and their properties

This section reviews the main properties of standard inequality indices; it also lists the
conventions in terminology and notation used throughout this appendix. Although
all the definitions could be expressed concisely in terms of the distribution function
F, for reasons of clarity I list first the terminology and definitions suitable specifically
for discrete distributions with a finite population, and then present the corresponding
concepts for continuous distributions.

Discrete Distributions

The basic notation required is as follows. The population size is n, and the income of
personiis y;, i =1,...,n. The arithmetic mean and the geometric mean are defined,
respectively, as
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=
1l
S
=

i=1
exp (

Using the arithmetic mean we may define the share of person i in total income as
si = yi/ [ny].

Table A.1 lists the properties of many inequality measures mentioned in this book,
in the following format:

S

n
a > log Yi) =Dyays. -yl
i=1

¢ A general definition of inequality measure given a discrete income distribution.

¢ The maximum possible value of each measure on the assumption that all
incomes are non-negative. Notice in particular that for ¢ > 1 the maximum of
Ag is 1 and the maximum of Dg is oo, but not otherwise. The minimum value of
each measure is zero, with the exception of the Herfindahl index for which the
minimum is 1.

¢ The transfer effect for each measure: the effect of the transfer of an infinitesimal
income transfer from person i to person j.

Continuous Distributions

The basic notation required is as follows. If y is an individual’s income, F(y) denotes
the proportion of the population with income less than or equal to y. The operator [
implies that integration is performed over the entire support of y; i.e. over [0, oo) or,
equivalently for F, over the interval [0, 1]. The arithmetic mean and the geometric
mean are defined as

?=/de,

y* :exp(/logde).

If the density function f (-) is everywhere well-defined then these definitions can be
written equivalently as

7=/yf(y)dy,
y*=eXp</1ogy f(y)dy).

From the above we may define the proportion of total income received by persons
who have an income less than or equal to y as

1 v
D(y) = §A zdF (z).

The Lorenz curve is the graph of (F, ®).
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Table A.1. Inequality measures for discrete distributions

Name Definition Maximum Transfer effect
. 1 n =12 o 2
Variance V:;i;[y,—y] 7 n—1] 21y =]
- v Yi—Yi
Coefficient of ¢ = 5 vn—1 —
variation ny/V
Range R = Yimax — Yemin ny 2if y; = Ymin @and ¥ = Ymax,
1if Yi = Ymin OF ¥j = Ymax,
0 otherwise
n
Rel. mean ~ M=1Y|% 1| 2-2 Zif [y -7Aly;~7] <0
deviation i=1
0 otherwise
s 1 2 2 yi 2
Logarithmic v =7 Z [Iog ﬁ] 00 - log &t — =2 log %
variance i=1
n
Variance of vy =13 [Iog L] o0 % log % - %% log 2
logarithms i=1 '
n n n—1 2F (y;) — F (%)
- 1 _ j
Gini 2n2y§i§ |y« y,| n ny
Atki Ac=1 ‘iLMﬁ 1-n™ or1 oy
inson =1—|- 4 -n or1* —_—
‘ [ = 7] } ny' e - Al
IR 1—n¢ 1V é&—y*
Dalton De =1 1"2,’715"’1 = n or 1+ R/
I -1 1—y 1 n )—,1 —£_1
-1 0-1 _ 01
. n n’t -1 Yi Vi
Generalized Eg= [l YL - 1i| L 0+0,1 oroott TN
entropy BOLn 5 [ y] g6 [0 =11y
1v y 19 11
MLD L:Ez%log(V):—;’;Iog(ns;):Eo 00 E[W_VTJ
i 1y S 1 Y
Theil T= ;’;L};Iog (ly’) :’;si log(nsj) = E1 logn ,Tylogﬁ
n
i —17c2 = 2 = [y, —
Herfindahl H=1[c+1] _I;s, 1 27 [vi = v]

Notes: * 1ife > 1; ** oo ife >; ** if § <0.

Table A.2 performs the role of Table A.1 for the case of continuous distributions as
well as other information: to save space not all the inequality measures have been
listed in both tables. The maximum value for the inequality measures in this case can
be found by allowing n — oo in column 3 of Table A.1. In order to interpret Table A.2
you also need the standard normal distribution function

1 X 1.2
N(X) = \/7/ e 24 du,
7T J —00
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Table A.2. Inequality measures for continuous distributions

Name Definition A(y; . 62) II(y; y. a)
Variance V= [y, — 71> dF p2+0? [gUZ _ 1] 7[(1710]‘2—”[;72]
Coefficient of ¢ = g e’ — 1 | e
variation
Rel. mean M=[]-1|dF 2[2N(g)—1] 2l
deviation
2
Logarithmic v=[ [Iog %] dF o+ 1ot log &L + L+ o=
variance
i 2
Variance of vy = [Iog yl] dF o2 é
logarithms
Equal shares F(p) N(9) 1-[21]"
Minimal F (®77(0.5)) N (o) 1-2a4
majority
Gini G=1-2[adF ZN(%)71 -
T-¢ ﬁ
—& - 1
Minson 4 =1 [f[#]""ar | Tmekr o[ (]
1 8[0276}%2 1 1 170
. _ - a- a
Generalized Eo=7g [[[ﬂ dF—1i|, 00,1 S oy [[T] m—q
entropy
v 2
MLD L=[log (%)dF = Eo z log (5%;) — &
Theil Tzfglog@)dF =E4 g log (&) + 45

provided in most spreadsheet software and tabulated in Lindley and Miller (1966) and
elsewhere; N~1(.) denotes the inverse function corresponding to N(.). In summary
Table A.2 gives:

* A definition of inequality measures for continuous distributions.
¢ The formula for the measure given that the underlying distribution is lognormal.

* The formula given that the underlying distribution is Pareto (type I).

A.3 Functional forms of distribution

We begin this section with a simple listing of the principal properties of the lognormal
and Pareto distributions in mathematical form. This is deliberately brief since a full
verbal description is given in Chapter 4, and the formulas of inequality measures for
these distributions are in Table A.2.
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The lognormal distribution
The basic specification is:

1 1 2
F(y)=A(y; u, 6®) = ex (f— logx — )dx,
W) =A(y; p0®) = | o= exp( 55 [logx —p]
(y) = A(y; p+ 0%, 0%,
y=eﬂ+%02

y* = et
where u and o are parameters; and the Lorenz curve is given by:

®=N(N"'(F) - o)

The Pareto distribution (type 1)
The basic specification is:

F(y)=H(y; y,0)=1- [z/y]a,

O(y) = H(y; yoa—1),
a

Vy=a-1t
y* — el/ay.

where a and y are parameters. The density function is

a

@y
QL

f(y)= pari

and the Lorenz curve is given by:
®=1-[1-F]a.

The last equation may be used to give a straightforward method of interpolation
between points on a Lorenz curve. Given two observed points (Fo, ®9), (F1, ®1),
then for an arbitrary intermediate value F (where Fy < F < F;), the corresponding
intermediate ®-value is:

-
1-F;
1-F

log =W Jog 1=
®(y) =1 —[1— ol exp (glkfgg>

However, if this formula is used to interpolate between observed points when the
underlying distribution is not Pareto type I, then the following difficulty may arise.
Suppose the class intervals used in grouping the data {a;, az, as, ..., ax, dx.1}, the pro-
portions of the population in each group {fi, f2. f3, ..., [k}, and the average income
of each group {w1, w2, u3, ..., uk}, are all known. Then, as described on page 125,
a ‘maximum inequality’ Lorenz curve may be drawn through the observed points
using this information. But the above Pareto interpolation formula does not use the
information on the as, and the resulting interpolated Lorenz curve may cross the
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maximum inequality curve. Methods that use all the information about each interval
are discussed below in the section ‘Estimation problems’ on page 175.

VAN DER WIJK’S LAW

As mentioned in Chapter 4, the Pareto type I distribution has an important connec-
tion with van der Wijk’s law. First we shall derive the average income z(y) of everyone
above an income level y. This is

_ufydu 1 — ()
T fawdu T VT=FG)

2(y)
From the above, for the Pareto distribution (type I) we have

R

a

“a-1

Hence the average income above the level y is proportional to y itself.

Now let us establish that this result is true only for the Pareto (type I) distribution
within the class of continuous distributions. Suppose for some distribution it is always
true that z(y) = vy where v is a constant; then, on rearranging, we have

/ uf(u)du:yy[ f(wdu,

y y

where f(-) is unknown. Differentiate this with respect to y:
—vfy) =—yyf+y 1 - FQ)I.

Define a = y/[y — 1]; then, rearranging this equation, we have

yf(y) +aF(y) =a.

Since f(y) =dF(y)/dy, this can be treated as a differential equation in y. Solving for
F, we have

y*F(y)=y*+ B,

where B is a constant. Since F (X) =0 when we have B = —y%. So
a
Fp=1-[y]"

Other Functional Forms

As noted in Chapter 4, many functional forms have been used other than the lognor-
mal and the Pareto. Since there is not the space to discuss these in the same detail,
the remainder of this section simply deals with the main types; indicating family
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relationships, and giving the moments about zero where possible. (If you have the
rth moment about zero, then many other inequality measures are easily calculated;
for example,

where u, is the rth moment about zero, r =1 — ¢ and w) = .)

We deal first with family relations of the Pareto distribution. The distribution
function of the general form, known as the type III Pareto distribution, may be
written as

eBy

Fy)=1- ——4.
P T s

where a > 0,8>0,y >0 and yy+8 > 0. By putting =0 and 8 =1 in the above

equation we obtain the Pareto type II distribution (see below). By putting =8 =0

and y = 1/y in the type Ill distribution we get the Pareto type I distribution, 71(y; y, a).
Rasche et al. (1980) suggested a functional form for the Lorenz curve as follows:

®=[1-[1-F].

Clearly this expression also contains the Pareto type I distribution as a special case.
The Rasche et al. (1980) form is somewhat intractable, and so in response Gupta
(1984) and Rao and Tam (1987) have suggested the following:

®=F"1 a>1,b>1.

(Gupta’s version has a =1.) A comparative test of these and other forms is also
provided by Rao and Tam (1987).
Singh and Maddala (1976) suggested as a useful functional form the following:

F(y)=1- ——4,
[1+yye]

where a, g, y are positive parameters. From this we can derive the following special
cases.

¢ If B =1 we have the Pareto type II distribution.

e If y=[1/a]k® and a — oo then the Weibull distribution is generated: F(y)=1—
exp (—[kyl?). The rth moment about zero is given by w, =k~ I'(1+71/p), where
I'(-) is the Gamma function defined by I'(x) = [;° uxe"du.

® A special case of the Weibull may be found when g = 1, namely the exponential
distribution F(y) =1 — exp(—ky). Moments are given by k" I'(1+r) which for
integral values of r is simply k~"r!.
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* Ifa=1andy = y#, then we find Fisk’s sech?-distribution:

g1
y

F)=1—|1+|%2 ,

» [+[y}}

with the rth moment about zero given by

Bsin (%)

Furthermore the upper tail of the distribution is asymptotic to a conventional

=1y , —B<r<B.

Pareto type I distribution with parameters y and g (for low values of y the dis-
tribution approximates to a reverse Pareto distribution—see Fisk (1961), p. 175).
The distribution gets its name from the transformation [y/ X]ﬁ = ¢*, whence the
transformed density function is f(x) = ¢*/[1 +¢*]?, a special case of the logistic
function.

The sech?-distribution can also be found as a special case of the Champernowne
distribution:

» sin 0

F(y):lfltan —
cos 0 + [y/z]

0

where 6 is a parameter lying between —= and = (see Champernowne 1953, Fisk 1961).
This likewise approximates the Pareto type I distribution in its upper tail and has the
following moments about zero:

) rzsin (%)

Hr=2 0 sin (%’)

, —B<r<B.

The required special case is found by letting § — 0.
The Yule distribution can be written either in general form with density function

f(y)=AB,(y,p+1)

where B,(y, p + 1) is the incomplete Beta function [y w’~'[1 — u]Pdu, p > 0and 0 < » <
1, or in its special form with » = 1, where the frequency is then proportional to the
complete Beta function B(y, p + 1).! Its moments are

: pn!
Mr:ZP—HA”J s p>r
i=1

! The analytical properties of the Beta and Gamma functions are discussed in many texts on
statistics, for example Berry and Lindgren (1996), Freund (2003).
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where

1 ifn=r

The Yule distribution in its special form approximates the distribution I7(y; I'(p)'/P, p)
in its upper tail. A further interesting property of this special form is that for a discrete
variable it satisfies van der Wijk’s law.

We now turn to a rich family of distributions of which two members have been
used to some extent in the study of income distribution—the Pearson curves. The
Pearson type I is the Beta distribution with density function:

Y=y

f(y)— BG )

where 0 <y <12 and ¢ 5 >0. The rth moment about zero can be written
B(é+r1,m)/B(¢ ) or as I'(E+r)[(E+n)/[T(E)I(é+n+71)]. The Gamma distribution is of
the type III of the Pearson family:

)

_ b—1p—=Ay
fy) = T ¢)y

where A, ¢ > 0. The moments are given by

/o 7rp(¢+r)
K= )

Three interesting properties of the Gamma function are as follows. Firstly, by putting
¢ =1, we find that it has the exponential distribution as a special case. Secondly,
suppose that A=1, and that y has the Gamma distribution with ¢ =¢, while w
has the Gamma distribution with ¢ = ¢,. Then the sum w + y also has the Gamma
distribution with ¢ = ¢, + ¢,: a property that is obviously useful if one is considering,
say, the decomposition of income into constituent parts such as earned and unearned
income. Thirdly, a Beta distribution with a high parameter 5 looks very similar to
a Gamma distribution with high values of parameters A, ¢. This can be seen from
the formula for the moments. For high values of x and any constant k it is the case
that I'(x)/I'(x + k) ~ x~X. Hence the moments of the B-distribution approximate to
[€+9] 7 T(€+7)/T().

2 This restriction means that y must be normalized by dividing it by its assumed maximum
value.
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Generalized Beta 2

Yule Singh-Maddala

\ Weibull Gamma -{ Beta

! |1 l Pareto \ /
' | type Ill

Sech2 exponential

:
1
N / Pareto !
1
\

T Pareto -7
type |

F1G. A.1. Relationships between functional forms

The two-parameter Gamma distribution and the three-parameter Singh-Maddala
distribution can each be shown to be a particular case of the four-parameter general-
ized Beta distribution of the second kind for which the density is:

5,,80-1
f(y)= By . a+0+1
B(8,a+1)[1+yyf]

Putting 8 = 1 in this expression produces the Singh-Maddala density; putting a =
k/y —1,B=1 and letting v — 0 yields the Gamma density.

The relationships mentioned in the previous paragraphs are set out in Fig. A.1.
Solid arrows indicate that one distribution is a special case of another. Broken lines
indicate that for high values of the income variable or for certain parameter values,
one distribution closely approximates another.

Finally let us look at distributions related to the lognormal. The most obvious is the
three-parameter lognormal which is defined as follows. If y — 7 has the distribution
A(w, 6®) where 7 is some parameter, then y has the three-parameter lognormal dis-
tribution with parameters 7, u, ¢®. The moments about zero are difficult to calculate
analytically, although the moments about y =~ are easy: [[y —7]"dF(y) = exp(rpn+
%rzaz). Certain inequality measures can be written down without much difficulty—
see Aitchison and Brown (1957), p. 15. Also note that the lognormal distribution is
related indirectly to the Yule distribution: a certain class of stochastic processes which
is of interest in several fields of economics has as its limiting distribution either the
lognormal or the Yule distribution, depending on the restrictions placed upon the
process. On this see Simon and Bonini (1958).
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A.4 Interrelationships between inequality measures

In this section we briefly review the properties of particular inequality measures which
appear to be fairly similar but which have a number of important distinguishing
features.

Atkinson (Ag) and Dalton (Dg) Measures
As we have seen, the Atkinson index may be written

Ae=1-— [,X:: [’;]1_8}118 .

Rearranging this and differentiating with respect to ¢, we may obtain:

log (1 — Ag)+ == 94e _ Yia [g]mlog(%).

1—Ag 0 ¢
e i [%]

Define x; = [y,»/y]l‘g and X = % Z;’zl x;. Noting that y; > 0 implies x; > 0 and that
% = [1 — Ag]'~¢ we may derive the following result:

9 Ag 1-4s [1C .
=— |- x;log (x;) — xlogx | .
be  x[1—e [n;:’ g () g}

The first term on the right-hand side cannot be negative, since x > 0 and 0 < A¢ < 1.
Now xlogx is a convex function so we see that the second term on the right-hand
side is non-negative. Thus dAg/de > O: the index Az never decreases with ¢ for any
income distribution.

However, the result that inequality increases with inequality aversion for any given
distribution does not apply to the related Dalton family of indices. Let us consider
D¢ for the cardinalization of the social utility function U used in Chapter 3 and for
the class of distributions for which y# 1 (if 7 =1 we would have to use a different
cardinalization for the function U—a problem that does not arise with the Atkinson
index). We find that if ¢ # 1:

PO = Ae) 1

J71—<‘3‘ -1

Deg=1-

and in the limiting case ¢ = 1:

~log (71— A1)

De=1 -
¢ 1og (7)

As ¢ rises, 1€ falls, but Ag rises, so the above equations are inconclusive about the
movement of Dg. However, consider a simple income distribution given by y; =1,
y2 =Y where Y is a constant different from 1. A simple experiment with the above
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formulas will reveal that Dg rises with ¢ if ¥ > 1 (and hence y > 1) and falls with ¢
otherwise.

The Logarithmic Variance (v) and the Variance of Logarithms (v1)
First, note from Table A.1 that v =v; + [log(y* /}7)]2. Consider the general form of
inequality measure

n

o2 flos (1)

i=1

where a is some arbitrary positive number. The change in inequality resulting from a
transfer of a small amount of income from person j to person i is:

n

2 y 2 i 2 C
o8 (2) = es () a5 w2 os ()

k=1

If a = j (the case of the measure v) then da/dy; = da/dy; and so the last term is zero.
If a = y* (the case of the measure v;), then }_log(yx) = nloga, and once again the last
term is zero. Hence we see that for v or v; the sign of the above expression depends
entirely on the behaviour of the function [1/x]logx, which occurs in the first two
terms. Now the first derivative of this function is [1 — log x]/x?, which is positive or
negative as x e =2.71828.... Suppose y; > y;. Then, as long as y; < ae, we see that
because (1/x)log x is an increasing function under these conditions, the effect of the
above transfer is to increase inequality (as we would require under the weak principle
of transfers). However, if y; > ae, then exactly the reverse conclusions apply—the
above transfer effect is negative. Note that in this argument a may be taken to be y
or y* according as the measure under consideration is v or v; (see also Foster and Ok
1999).

A.5 Decomposition of inequality measures

By Subgroups

As discussed in Chapter 3, some inequality measures lend themselves readily to an
analysis of inequality within and between groups in the population. Let there be k
such groups so arranged that every member of the population belongs to one and
only one group, and let the proportion of the population falling in group j be f;;* by
definition we have Z’;zl fj = 1. Write mean income in group j as y;, and the share of
group j in total income as g; (which you get by adding up the income shares of all
the members of group j), so that g; = f;7;/7, Z’;=1 fi7; =y and Zl;=1 gj = 1. For some
specified inequality measure, let inequality in group j (in other words the inequality
measures calculated for group j as if it were a population in its own right) be denoted
I; and let inequality for the total population be Iotar.

3 This is equivalent to the term ‘relative frequency’ used in Chapter 5.
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An inequality index I is then considered to be decomposable if there can be found
some aggregation function = possessing the following basic property: for any arbitrary
income distribution we may write

Lot = E (I, Loy oo LG V1 Yoo ooy Vi, N2, oo HE)
In other words, total inequality should be a specific function Z of inequality in
each subgroup, this function depending perhaps on group mean incomes and the
population in each group, but nothing else. The principal points to note about
decomposability are as follows:

* Some inequality measures simply will not let themselves be broken up in this
way: for them no such = exists. As Chapter 3 discussed, the relative mean
deviation, the variance of logarithms, and the logarithmic variance cannot be
decomposed in a way that depends only on group means and population shares;
the Gini coefficient can only be decomposed if the constituent subgroups are
‘non-overlapping’ in the sense that they can be strictly ordered by income levels.
In this special case we have

n "2

25 29 5
16+ 226,44 G b Grenven. (A1)
ey ey 2y

Gtotal =

within

where Gpetween 1S the value of the Gini coefficient that you would obtain if all
individuals in group j receive y;.

® On the other hand, there is a large class of measures which will work, and
the allocation of inequality between and within groups is going to depend on
the inequality aversion, or the appropriate notion of ‘distance’ which char-
acterizes each measure. The prime example of this is the generalized entropy
class Ey introduced on page 66 for which the scale independence property
also holds. Another important class is that of the Kolm indices which take the
form

1 J IR
1 - [yl
(i)

where « is a parameter that may be assigned any positive value. Each member of
this family has the property that if you add the same absolute amount to every y;
then inequality remains unaltered (by contrast to the proportionate invariance
of E 0)

® The cardinal representation of inequality measures—not just the ordinal
properties—matters, when you break down the components of inequality.

Let us see how these points emerge in the discussion of the generalized entropy
family Ey and the associated Atkinson indices. For the generalized entropy class E
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the inequality aggregation result can be expressed in particularly simple terms. If we
define*

}_/ 9
Ibetween = Z f] [?] -
and

k
Iwithin = Z ijj, where w;j =g]0 /-176

j=1

then for any generalized entropy measure we have:

Liotal = Ibetween + Iwithin-

From these three equations we may note that in the case of the generalized entropy
class:

¢ Total inequality is a simple additive function of between-group and within-group
inequality.

¢ The between-group component of inequality is found simply by assuming that
everyone within a group receives that group’s mean income: it is independent of
redistribution within any of the j groups.

¢ Within-group inequality is a weighted average of inequality in each sub-group,
although the weights w; do not necessarily sum to one.

¢ The within-group component weights will only sum to one if = O (the case of
the mean logarithmic deviation L) or if § = 1 (the case of Theil’s index T).

The Atkinson index Ag is ordinally equivalent to Eg for ¢ =1 — 0 > 0 (they will
always rank any set of Lorenz curves in the same order, as we noted in Chapter 3); in
fact we have

1-[[62 - 6] Eg+1]"%  for 640
Ag =

Aj=1—¢Fo for=0

However, because this relationship is nonlinear, we do not have cardinal equivalence
between the two indices; as a result we will get a different relationship between total
inequality and its components. We can find this relationship by substituting the last
formula into the decomposition formula for the generalized entropy measure above.
If we do this then—for the case where I is the Atkinson index with parameter e—we
get the following:

4 Notice that this is the same as the expression given for the generalized entropy measure in

Table A.1 for the case where f; = 1/n: in other words you can imagine the whole population of
size n as being composed of n groups each of size 1.
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(TYJN

k }—/ -
Ipetween = 1 — Z f/ [T]
i v

1

"1y &
Itotal=1_|: |:y] ]
i TLY

1- Itotal]1_8 = [[1 - Ibetween]l_s +[1— Iwithin]l_g - 1:|

and from these we can deduce

1
k =

Lyithin =1 — 1_2 Ié‘gll 8|:1_Ii]1_g_1]

To restate the point: the decomposition formula given here for the Atkinson
index is different from that given on page 166 for the generalized entropy index
because one index is a nonlinear transformation of the other. Let us illustrate this
further by taking a specific example using the two inequality measures, A, and
E_;, which are ordinally but not cardinally equivalent. We have the following
relationship:

1

Ap=1-— .
2 2E 1 +1

Applying this formula and using a self-explanatory adaptation of our earlier notation
the allocation of the components of inequality is as follows:

k f2
E _1within] = Z %E—l[/']
= 8
1[&
E—l[between] =5 Z - -
2 o Si

E _1jtotal] = E_1[petween] + E —1[within]

whereas

AZ[between] + AZ[within] - AZ[between] AZ[within]
Azjtotal] = .
1 — Azpetween] A2[within]

Now let us consider the situation in China represented in Table A.3. The top part
gives the mean income, population, and inequality for each of the ten regions, and
for urban and rural groups within each region. The bottom part of the table gives the
corresponding values for A, and E_; broken down into within- and between-group
components (by region) for urban and regional incomes. Notice that:

¢ The proportion of total inequality ‘explained’ by the interregional inequality
differs according to whether we use the generalized entropy measure or its
ordinally equivalent Atkinson measure.
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Table A.3. Decomposition of inequality in Chinese provinces, rural and urban
subpopulations

Urban Rural
Pop Mean A; E_,4 Pop Mean A, E_,4
Beijing 463 93 0.151 0.089 788 58 0.135 0.078
Shanxi 564 65 0.211 0.134 1394 29 0.197 0.123
Heilongjiang 506 79 0.160 0.095 1566 33 0.178 0.108
Gansu 690 73 0.153 0.090 1345 19 0.220 0.141
Jiangsu 403 89 0.118 0.067 1945 39 0.180 0.110
Anhui 305 70 0.129 0.074 2284 33 0.112 0.063
Henan 402 75 0.195 0.121 2680 26 0.226 0.146
Hubei 764 81 0.118 0.067 2045 34 0.171 0.103
Guangdong 546 82 0.159 0.095 1475 34 0.211 0.134
Sichuan 1126 84 0.205 0.129 2698 30 0.148 0.087
All 5769 18220
Inequality breakdown:
total 0.175 0.106 0.222 0.142
within 0.168 0.101 0.190 0.118
(96.2%) (95.5%) (86.0%) (82.7%)
between 0.009 0.005 0.047 0.025
(5.4%) (4.5%) (21.2%) (17.3%)

Source: The Institute of Economics, the Chinese Academy of Social Sciences.
Incomes: Yuan/month

* The between-group and within-group components sum exactly to total inequal-
ity in the case of the generalized entropy measure, but not in the case of the
Atkinson measure (these satisfy the more complicated decomposition formula
immediately above).

Finally, a word about V, the ordinary variance, and vy, the variance of logarithms.
The ordinary variance is ordinally equivalent to E; and is therefore decomposable in
the way that we have just considered. In fact we have:

k

V[totalj = Z f] V[/'] + V[between]
j=1

where V};) is the variance in group j. Now in many economic models where it is
convenient to use a logarithmic transformation of income, one often finds a ‘decom-
position’ that looks something like this:

k

V1[total] = Z fivij) + Vipetween]-
i=1

However, this is not a true inequality decomposition. To see why, consider the
meaning of the between-group component in this case. We have

k
Vl[between] = Z f] [IOg }/7 - log y*]z .
j=1

168



Technical Appendix

But, unlike the between-group component of the decomposition procedure we out-
lined earlier, this expression is not independent of the distribution within each group:
for example if there were to be a mean-preserving income equalization in group j,
both the within-group geometric mean (yj) and the overall geometric mean (y*) will
be affected. As mentioned above, you cannot properly disentangle the within-group
and between-group inequality components for the variance of logarithms.

By Income Components

By contrast to the problem of decomposition by population subgroups, there are
relatively few inequality measures that will allow a convenient breakdown by com-
ponent of income. However, the coefficient of variation ¢ and measures that are
ordinally equivalent to it (such as V and H) can be handled relatively easily. Nothing
is lost by simplifying to a pairwise decomposition: let income be made up of two
components, A and B so that for any person: y; = yia + yig. Further, let ¢, ca, cp be,
respectively, the value of the coefficient of variation for total income, component A
income and component B, let A be the overall amount of component A as a proportion
of total income, and let p be the correlation coefficient between component A and
component B of income. Then:

2 =22 +[1 = N* 2 +2X[1 = A cacpp.

Note that this is well-defined even in the presence of negative income components.

A.6 Negative incomes

For a great many applications in economics it is convenient and reasonable to
assume that incomes are non-negative. In fact most of the material in this book
has proceeded on this basis. However, there are some important exceptions to this:
for example personal wealth (net worth) may be negative at various points of the
lifecycle, individuals’ incomes may contain substantial losses from self-employed or
unincorporated business activity.

The possibility that even a few observations may be negative raises some issues
of principle for inequality measurement. Many of the standard inequality measures
are simply undefined for negative incomes; furthermore there is a substantial class of
these measures that will not work even for zero incomes.

However, the standard ‘ranking’ tools, such as quantiles and shares, are well defined
for all incomes—positive, zero or negative—although they may need to be interpreted
with some care. For example the Parade diagram will probably look much the same
as that depicted in Fig. 2.1, but the axes will have been shifted vertically.

To see how the shape of the Lorenz curve and the generalized Lorenz curve is
affected by the presence of negative incomes, recall that the slope of the Lorenz
curve is given by y/y, and the slope of the generalized Lorenz curve by y. So, if there
are some negative incomes, but the mean is still strictly positive, then both curves
will initially pass below the horizontal axis (they will be downward-sloping for as
long as incomes are negative), will be horizontal at the point where zero income is
encountered, and then will adopt a fairly conventional shape over the rest of the
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diagram. If mean income is actually negative, then the Lorenz curve will appear to be
‘flipped vertically’ (the generalized Lorenz curve is not affected in this way).

In fact, the use of the conventional Lorenz curve is somewhat problematic in the
presence of negative incomes. For this reason it is sometimes convenient to use the
absolute Lorenz curve (Moyes 1987), which may be described as follows. The ordinary
(or relative) Lorenz curve can be thought of as the generalized Lorenz curve of the
distribution (% % e Yy#) and the absolute Lorenz curve is the generalized Lorenz
curve of the distribution (1 — 7, y2 — 7, ..., yu — J).

The reason that many conventional inequality tools will not work in the presence
of negative incomes can be seen from the ‘evaluation function’ h(-) introduced on
page 113. Recall that many inequality measures can be defined in terms of the
evaluation function. Consider, for example, the generalized entropy family which
will have an evaluation function of the form

h(y) = Y.

This function—and hence the associated inequality measures—will be well defined
for all negative incomes for the special case where 6 is a positive integer greater
than 1. However, this severely restricts the choice of , because measures with even
moderately large values of # prove to be extraordinarily sensitive to incomes in the
upper tail. This means, for example, that in estimating inequality from a sample
of microdata, one or two large incomes will drive the estimates of inequality by
themselves. The coefficient of variation ( = 2) is the only member of the generalized
entropy class that is likely to be of practical use.

By contrast, all the Kolm indices work with negative incomes; the / function here is

h(y) = Ae™

(k > 0) which is well-defined for all values of y. Finally, measures that are based on
absolute differences—such as the Gini coefficient and relative mean deviation—will
also be able to cope with negative incomes.

A.7 Estimation problems

Microdata

As noted in Chapter 5, point estimates of inequality measures from a sample can
be obtained just by plugging in the observations to the basic formulas given in
Chapters 3 and 4. For computation of point estimates of inequality using unweighted
microdata there are very few operations involved:

¢ Transformation of the income variable /(y;)—the calculation of each term in the
formula for J on page 114; the function h() typically involves taking logs or
raising to a power and normalizing by the mean; so the calculation can usually
be performed by standard built-in functions in spreadsheet software.

¢ Calculating mean income and the mean of the transformed variables (as in the
formula for / on page 114)—another standard spreadsheet operation.
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¢ Sorting the data if you want to compute the Gini coefficient (page 114) or plot
Lorenz curves—again this is standard for spreadsheets.

The only further qualification that ought to be made is that in practice one often
has to work with weighted data (the weights could be sampling weights for example).
In this case, associated with each observed income y; there is a non-negative weight
wj; let us suppose the weights have been normalized so that they sum to 1. Then,
instead of the J-formula on page 114, one computes

n
J = wih(y)
i=1
and instead of the formula for G on page 114 one computes®
1 n
G =< Kiwpl
=
where
i
Ki = ZZw(;) — W) — 1.

j=1

This requires a little more care, of course, but is still within the capability of standard
spreadsheets.

Now consider the standard errors of inequality estimates in the case of unweighted
data. As we noted on page 159, inequality measures can be expressed in terms of
standard statistical moments. Correspondingly, in situations where we are working
with a sample {1, )2, ... y,} of n observations from a target population, we will be
interested in the sample moment about zero:

1 n
m = p ZY:”~
i=1

Standard results give the expected value (mean) and variance of the sample
statistic m;:

€(m) = p
L. 2
var (m) = ~ [ = [ 1°]
and an unbiased estimate of the sample variance of m is

var () = - [y, — [ "]

5 In line with our previous usage wg and y;;) denote the weight and income for observation
i after the observations have been sorted in ascending order of incomes. Note that in each case
you can recover the original formulas for / and G for the unweighted case by setting w; = 1/n
everywhere.
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If the mean of the distribution is known and you have unweighted data, then
this last formula gives you all you need to set up a confidence interval for the
generalized entropy measure Eg. Writing r = 0 and substituting we get (in this special

Case):
0
Ee = 799 _79 -1

where y is the known mean (u}).

However, if the mean also has to be estimated from the sample (as n7)), or if we
wish to use a nonlinear transformation of rrie, then the derivation of a confidence
interval for the inequality estimate is a bit more complicated. Applying a standard
result (Rao 1973) we may state that if i is a differentiable function of n7, and n7), then

the expression /71 [¢ (m;, m}) — (), ;)] is asymptotically normally distributed thus:

2 2
N (O, [%} var (m1,) +2% aiflrcov (m,, ) + [%] var (nﬁ)) .

Again, if one has to work with weighted data the formulas for the standard errors
will need to be modified to take into account the weighting. A crucial point here is
whether the weights themselves also should be treated as random variables—see the
notes (page 193) for further discussion of this point.

Finally, let us consider the problem of estimating the density function from a set
of n sample observations. As explained on page 114 in Chapter 5, a simple frequency
count is unlikely to be useful. An alternative approach is to assume that each sample
observation gives some evidence of the underlying density within a ‘window’ around
the observation. Then you can estimate F(y), the density at some income value y,
by specifying an appropriate kernel function K (which itself has the properties of
a density function) and a window width (or ‘bandwidth’) w and computing the
function

fy = ;;K (%)

—the individual terms in the summation on the right-hand side can be seen as con-
tributions of the observations y; to the density estimate f(y). The simple histogram
is an example of this device—see, for example, Fig. 5.5. All the sample observations
that happen to lie on or above a; and below aj,; contribute to the height of the
horizontal line-segment in the interval (a;, a;,1). In the case where all the intervals
are of uniform width so that w = a;,; — a;, we would have

— 1if aj <y <aj and
K (7) = aj < Vi <dji1-

w
0 otherwise

However, this histogram rule is crude: each observation makes an ‘all or nothing’
contribution to the density estimate. So it may be more useful to take a kernel
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)

k1 2

F1G. A.2. Density estimation with a normal kernel

function that is less drastic. For example K is often taken to be the normal density so
that

K(Z:&)=4Lfﬁv%f

w 27

The effect of using the normal kernel is illustrated in Fig. A.2 for the case where
there are just four income observations. The upper part of Fig. A.2 illustrates the use
of a fairly narrow bandwidth, and the lower part the case of a fairly wide window: the
kernel density for each of the observations y; ... y, is illustrated by the lightly-drawn
curves: the heavy curve depicts the resultant density estimate. There is a variety of
methods for specifying the kernel function K and for specifying the window width w
(for example, so as to make the width of the window adjustable to the sparseness or
otherwise of the data): these are discussed in Silverman (1986) and Simonoff (1996).
Of course associated with each kernel point estimate f(y) there will also be a sampling
variance, but that takes us beyond the scope of this book.

Grouped Data
Now let us suppose that you do not have microdata to hand, but that it has been
presented in the form of income groups. There are three main issues to be discussed.

* How much information do you have? Usually this turns on whether you have three
pieces of information about each interval (the interval boundaries g;, i1, the
relative frequency within the interval f;, and the interval mean w;) or two (the
interval boundaries, and the frequency). We will briefly consider both situations.
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® What assumption do you want to make about the distribution within each interval?
You could be interested in deriving lower and upper bounds on the estimates
of the inequality measure, consistent with the available information, or you
could derive a particular interpolation formula for the density function ¢,(y) in
interval i.

® What do you want to assume about the distribution across interval boundaries? You
could treat each interval as a separate entity, so that there is no relationship
between ¢,(y) and ¢,,, (y); or you could require that at the boundary between the
two intervals (a;,1 in this case) the frequency distribution should be continuous,
or continuous and smooth, etc. This latter option is more complicated and
does not usually have an enormous advantage in terms of the properties of the
resulting estimates. For this reason I shall concentrate upon the simpler case of
independent intervals.

Given the last remark, we can estimate each function ¢, solely from the informa-
tion in interval i. Having performed this operation for each interval, then to compute
an inequality measure we may, for example, write the equation on page 114 as

Ai+1

k
=3 [ 0y,
i=1 74

i

Interpolation on the Lorenz curve may be done as follows. Between the observations
i and i+ 1 the interpolated values of F and & are

v
F)=Fi+ [ 4,00dx,
Ll,'y
O(y) = @ +/ X, (x)dx.

ai

So, to find the share of the bottom 20 per cent, let us say, you set F(y) = 0.20 on the
left-hand side of the first equation, substitute in the appropriate interpolation formula
and then find the value of y on the right-hand side that satisfies this equation; you
then substitute this value of y into the right-hand side of the second equation and
evaluate the integral.

Interval Means Unknown

In the interpolation formulas presented for this case there is, in effect, only one

parameter to be computed for each interval. The histogram density is found as the
following constant in interval i.

fi

()= —"—

hily i1 —

, i =Y < iyl
a;i Y

Using the formulas given on page 157 above, we can see that the Paretian density in
any closed interval is given by
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&) = = a+1, 4 <y < a1

_ log(l + 1)

10g is1

We can use a similar formula to give an estimate of Pareto’s a for the top (open)
interval of a set of income data. Suppose that the distribution is assumed to be
Paretian over the top two intervals. Then we may write:

i __ —a*

fior @ —a
from which we obtain

log (1 + @)
log % e

as an estimate of a in interval k.

Interval Means Known

Let us begin with methods that will give the bounding values J; and Jy cited on page
120. Within each interval the principle of transfers is sufficient to give the distribution
that corresponds to minimum and maximum inequality:® for a minimum all the
observations must be concentrated at one point, and to be consistent with the data
this one point must be the interval mean w;; for a maximum all the observations
must be assumed to be at each end of the interval.

Now let us consider interpolation methods: in this case they are more complicated
because we also have to take into account the extra piece of information for each
interval, namely u;, the within-interval mean income.

The split histogram density is found as the following pair of constants in interval i

fi iy — IJ«I

P , a4 < < Wi,

bpo) @ T
i fi  pi—a

— Wi SV < Gis1-
i1 — Ai iyl — Ui Hi=y "
This method is extremely robust, and has been used, unless otherwise stated, to
calculate the ‘compromise’ inequality values in Chapter 5.
The log-linear interpolation is given by

é:(y) = Jars G SV < din

where

_ofi
—-a -
a4~ —diy

C=

6 Strictly speaking we should use the term ‘least upper bound’ rather than ‘maximum’ since
the observations in interval i are strictly less than (not less than or equal to) a;,1.
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and a is the root of the following equation:

1-a 1-a
a g — i i
— — - 1
a-1 a;%—a.f

which may be solved by standard numerical methods. Notice the difference between
this and the Pareto interpolation method used in the case where the interval means
are unknown: here we compute two parameters for each interval, a and ¢ which fixes
the height of the density function at a;, whereas in the other case ¢ was automatically
set to a; *. The last formula can be used to compute the value of « in the upper tail.

Leti = k and ax,; — oo: then, if o > 1, we have a ¢ — 0 and a.;* — 0. Hence we get:

a_lak=,uk

from which we may deduce that for the upper tail o = 1/[1 — ax/u].

Warning: If the interval mean u; happens to be equal to, or very close to, the
midpoint of the interval %[a,- +ai;1], then this interpolation formula collapses to that
of the histogram density (see above) and a — oc. It is advisable to test for this first
rather than letting a numerical algorithm alert you to the presence of an effectively
infinite root.

The straight line density is given by

$(Y)=b+cy, ai <y <ain

Table A.4. Source files for tables and figures

Table Figure Figure

3.3 East-West 2.1 ET Income Distribution 5.1 IR income

3.4  East-West 2.2 ET Income Distribution 5.2 HBAI

5.2 IRS Income Distribution 2.3 ET Income Distribution 5.3 HBAI

5.4 IRS Income Distribution 2.4 ET Income Distribution 5.5 HBAI

5.5  Czechoslovakia 2.5 ET Income Distribution 5.6 HBAI

5.6  Taxes and Benefits 2.9 Earnings Quantiles 5.7 HBAI

5.7  Jiangsu 2.10  ET Income Distribution 5.8 IRS Income Distribution

A3 Decomp 2.11  ET Income Distribution 5.9 IRS Income Distribution
2.12  ET Income Distribution  5.10  IRS Income Distribution
2.13  ET Income Distribution  5.11  IRS Income Distribution
3.1 Atkinson SWF 5.12 IRS Income Distribution
3.2 Atkinson SWF 5.14  IRS Income Distribution
3.9 LIS comparison 5.15 IRSineq
3.10 LIS comparison 5.16 IRSineq
4.5 ET Income Distribution  5.17  Czechoslovakia
410 NES 5.18 Czechoslovakia
4.11 IR wealth 5.19 IRS Income Distribution
4.12  Pareto example 5.20 IRS Income Distribution
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where
12w — 6 [aj1 — a;
p - 120 =~ 6lain —ai] L ] f
(a1 — ai
__fi 1
c= P— 3 [@is1 +ai] b.

Warning: this formula has no intrinsic check that ¢, (y) does not become negative for
some y in the interval. If you use it, therefore, you should always check that ¢,(a;) > 0
and that ¢,(a;1) > 0.

A.8 Using the website

To get the best out of the examples and exercises in the book it is helpful to run
through some of them yourself: the data files make it straightforward to do that. The
files are accessed from the website at http://darp.lse.ac.uk/MI3 in Excel 2003 format.

You may find it helpful to be able to recreate the tables and figures presented in
this book using the website: the required files are summarized in Table A.4. Individual
files and their provenance are cited in detail in Appendix B.
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APPENDIX B

Notes on Sources and Literature

This appendix describes the datasets that have been used for particular examples
in each chapter, cites that which has been used for the discussion in the text, and
provides a guide for further reading. In addition some more recondite supplementary
points are mentioned. The arrangement follows the order of the material in the five
chapters and Technical Appendix.

B.1 Chapter 1

For a general discussion of terminology and the approach to inequality you could go
to Chapter 1 of Atkinson (1983), Cowell (2008b, 2008c), and Chapter 2 of Thurow
(1975); reference may also be made to Bauer and Prest (1973). For a discussion of the
relationship between income inequality and broader aspects of economic inequality
see Sen (1997). For other surveys of inequality measurement issues see Jenkins and
Van Kerm (2008) and for a more technical treatment, Cowell (2000) and Lambert
(2001).

Inequality of What?

This key question is explicitly addressed in Sen (1980, 1992). The issue of the
measurability of the income concept is taken up in a very readable contribution
by Boulding (1975), as are several other basic questions about the meaning of the
subject which were raised by the nine interpretations cited in the text Rein and Miller
(1974). For an introduction to the formal analysis of measurability and comparability,
see Sen and Foster (1997 [Sen 1973], pp. 43-46), and perhaps then try going on to
Sen (1974) which, although harder, is clearly expounded. There are several studies
which use an attribute other than income or wealth, and which provide interesting
material for comparison: Jencks (1973) puts income inequality in the much wider
context of social inequality; Addo (1976) considers international inequality in such
things as school enrolment, calorie consumption, energy consumption and numbers
of physicians; Alker (1965) discusses a quantification of voting power; Russet (1964)
relates inequality in land ownership to political instability. The problem of the size
of the cake depending on the way it is cut has long been implicitly recognized (for
example, in the optimal taxation literature) but does not feature prominently in
the works on inequality measurement. For a general treatment read Tobin (1970),
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reprinted in Phelps (1973). On this see also the Okun (1975, Chapter 4) illustration
of ‘leaky bucket’ income transfers.

The issue of rescaling nominal incomes so as to make them comparable across
families or households of different types—known in the jargon as ‘equivalization’—
and its impact upon measured inequality is discussed in Coulter et al. (1992a,
1992b)—see also page 191 below. Alternative approaches to measuring inequality
in the presence of household heterogeneity are discussed in Cowell (1980), Ebert
(1995, 2004), Glewwe (1991), Jenkins and O’Higgins (1989), Jorgenson and Slesnick
(1990). The issues of measuring inequality when the underlying ‘income’ concept is
something that is not cardinally measurable—for example measuring the inequality
of health status—is discussed in Abul Naga and Yalcin (2008), Allison and Foster
(2004).

Inequality Measurement, Justice, and Poverty

Although inequality is sharply distinct from mobility, inequality measures have
been used as a simple device for characterizing income mobility—after covering the
material in Chapter 3 you may find it interesting to check Shorrocks (1978). The
application of inequality-measurement tools to the analysis of inequality of opportunity
is addressed in Lefranc et al. (2008) and Pistolesi (2009).

On the desirability of equality per se see Broome (1988). Some related questions
and references are as follows: Why care about inequality? (Milanovic 2007) Does it
make people unhappy? (Alesina et al. 2004) Why measure inequality? Does it matter?
(Bénabou 2000, Elliott 2009, Kaplow 2005) Do inequality measures really measure
inequality? (Feldstein 1998)

On some of the classical principles of justice and equality, see Rees (1971), Chapter
7 and Wilson (1966). The idea of basing a model of social justice upon that of
economic choice under risk is principally associated with the work of Harsanyi (1953,
1955)—see also Bosmans and Schokkaert (2004), Amiel et al. (2009), and Cowell
and Schokkaert (2001). Hochman and Rodgers (1969) discuss concern for equality
as a consumption externality. A notable landmark in modern thought is Rawls
(1971) which, depending on the manner of interpretation of the principles of justice
there expounded, implies most specific recommendations for comparing unequal
allocations. Bowen (1970) introduces the concept of ‘minimum practicable inequal-
ity’, which incorporates the idea of special personal merit in determining a just
allocation.

Stark’s (1972) approach to an equality index is based on a head-count measure
of poverty and is discussed in Chapter 2; Batchelder (1971, p. 30) discusses the
‘poverty gap’ approach to the measurement of poverty. The intuitive relationships
between inequality and growth (or contraction) of income are set out in a novel
approach by Temkin (1986) and are discussed further by Amiel and Cowell (1994b)
and Fields (2007). The link between a measure that captures the depth of poverty
and the Gini coefficient of inequality (see Chapter 2) was analysed in a seminal
paper by Sen (1976a), which unfortunately the general reader will find quite hard;
the huge literature which ensued is surveyed by Foster (1984), Hagenaars (1986),
Ravallion (1994), Seidl (1988), and Zheng (1997). The relationship between inequality
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and poverty measures is discussed in some particularly useful papers by Thon (1981,
1983a). An appropriate approach to poverty may require a measure of economic status
that is richer than income—see Anand and Sen (2000).

Inequality and the Social Structure

The question of the relationship between inequality in the whole population and
inequality in subgroups of the population with reference to heterogeneity due to
age is tackled in Paglin (1975) and in Cowell (1975). The rather technical paper of
Champernowne (1974) explores the relationship between measures of inequality as a
whole and measures that are related specifically to low incomes, to middle incomes,
or to high incomes.

B.2 Chapter 2

The main examples here are from the tables in Economic Trends, November 1987
(based on the Inland Revenue’s Survey of Personal Incomes augmented by informa-
tion from the Family Expenditure Survey), which are reproduced on the website in the
file ‘ET income distribution’: the income intervals used are those that were specified
in the original tables. If you open this file you will also see exactly how to construct
the histogram for yourself: it is well worth running through this as an exercise. The
reason for using these data to illustrate the basic tools of inequality analysis is that
they are based on reliable data sources, have an appropriate definition of income,
and provide a good coverage of the income range providing some detail for both low
incomes and high incomes. Unfortunately this useful series has not been maintained:
we will get to the issue of what can be done with currently available datasets in
Chapter 5.

The example in Fig. 2.9 is taken from the Annual Survey of Hours and Earnings
(formerly the New Earnings Survey) data—see file ‘Earnings quantiles’ on the website.
The reference to Plato as an early precursor of inequality measurement is to be found
in Saunders (1970), pp. 214-15.

Diagrams

One often finds that technical apparatus or analytical results that have become
associated with some famous name were introduced years before by someone else
in some dusty journals, but were never popularized. So it is with Pen’s Parade, set
out in Pen (1974), which had been anticipated by Schutz (1951), and only rarely
used since—cf. Budd (1970). As we have seen, the Parade is simply related to the
cumulative frequency distribution if you turn the piece of paper over once you have
drawn the diagram: for more about this concept, and also frequency distributions
and histograms, consult a good statistics text such as Berry and Lindgren (1996),
Casella and Berger (2002), or Freund and Perles (2007); for an extensive empirical
application of Pen’s parade see Jenkins and Cowell (1994a). The log-representation
of the frequency distribution is referred to by Champernowne (1973, 1974) as the
‘people curve’.
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The Lorenz curve originally appeared in Lorenz (1905). Its convex shape (referred
to on page 170) needs to be qualified in one very special case: where the mean of the
thing that you are charting is itself negative—see page 170 in the Technical Appendix
and Amiel ef al. (1996). For a formal exposition of the Lorenz curve and proof of the
assertions made in the text see Levine and Singer (1970) and Gastwirth (1971). Lorenz
transformations are used to analyse the impact of income redistributive policies—see
Arnold (1990), Fellman (2001), and the references in Question 7 on page 38. On using
a transformation of the Lorenz curve to characterize income distributions see Aaberge
(2007); see Fellman (1976) and Damjanovic (2005) for general results on the effect
of transformations on the Lorenz curve. Lam (1986) discusses the behaviour of the
Lorenz curve in the presence of population growth.

The relationship between the Lorenz curve and Pen’s parade is also discussed by
Alker (1970). The Lorenz curve has further been used as the basis for constructing a
segregation index (Duncan and Duncan 1955; Cortese et al. 1976). For more on the
Lorenz curve see also Blitz and Brittain (1964), Crew (1982), Hainsworth (1964), Koo
et al. (1981), and Riese (1987).

Inequality Measures

The famous concentration ratio Gini (1912) also has an obscure precursor. Thirty-six
years before Gini’s work, Helmert (1876) discussed the ordinally equivalent measure
known as Gini’s mean difference—for further information see David (1968, 1981).
Some care has to be taken when applying the Gini coefficient to indices of data where
the number of individuals 7 is relatively small (Allison 1978, Jasso 1979): the problem
is essentially whether the term n? or n[n — 1] should appear in the denominator of
the definition—see the Technical Appendix page 155. A convenient alternative form
of the standard definition is given in Dorfman (1979):

G=1- %f P(y)’dy where P(y) =1 — F(y).
0

For an exhaustive treatment of the Gini coefficient see Yitzhaki (1998).

The process of rediscovering old implements left lying around in the inequality
analyst’s toolshed continues unabated, so that often several labels and descriptions
exist for essentially the same concept. Hence M, the relative mean deviation, used
by Schutz (1951), Dalton (1920), and Kuznets (1959), reappears as the maximum
equalization percentage, which is exactly 2M (United Nations Economic Commission
for Europe 1957), and as the ‘standard average difference’ (Francis 1972). Eltet6 and
Frigyes (1968) produce three measures which are closely related to M, and Addo’s
‘systemic inequality measure’ is essentially a function of these related measures; see
also Kondor (1971). Gini-like inequality indices have been proposed by Basmann
and Slottje (1987), Basu (1987), Berrebi and Silber (1987), Chakravarty (1988), and
Yitzhaki (1983), and generalizations and extensions of the Gini are discussed by
Barrett and Salles (1995), Bossert (1990), Donaldson and Weymark (1980), Kleiber and
Kotz (2002), Moyes (2007), Weymark (1981), and Yaari (1988); see also Lin (1990). The
Gini coefficient has also been used as the basis for regression analysis (Schechtman
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and Yitzhaki 1999) and for constructing indices of relative deprivation (Bishop et al.
1991, Chakravarty and Chakraborty 1984, Cowell 2008a, Yitzhaki 1979).

The properties of the more common ad hoc inequality measures are discussed
at length in Atkinson (1970, pp. 252-57; 1983, pp. 53-58), Champernowne (1974,
p- 805), Foster (1985), Jenkins (1991), and Sen and Foster (1997, pp. 24-36). Berrebi
and Silber (1987) show that for all symmetric distributions G < 0.5: a necessary
condition for G > 0.5 is that the distribution be skewed to the right. Chakravarty
(2001) considers the use of the variance for the decomposition of inequality and
Creedy (1977) and Foster and Ok (1999) discuss the properties of the variance of
logarithms. The use of the skewness statistic was proposed by Young (1917); this
and other statistical moments are considered further by Champernowne (1974);
Butler and McDonald (1989) discuss the use of incomplete moments in inequality
measurement (the ordinates of the Lorenz curve are simple examples of such incom-
plete moments—see the expressions on page 114). On the use of the moments of
the Lorenz curve as an approach to characterizing inequality see Aaberge (2000).
Further details on the use of moments may be found in texts such as Casella and
Berger (2002) and Freund (2003). For more on the minimal majority coefficient
(sometimes known as the Dauer-Kelsay index of malapportionment) see Alker and
Russet (1964), Alker (1965), and Davis (1954, pp. 138-43). Some of the criticisms of
Stark’s high-low measure were originally raised in Polanyi and Wood (1974). Another
such practical measure with a similar flavour is the Wiles (1974) semi-decile ratio:
(minimum income of top 5 per cent)/(maximum income of bottom 5 per cent). Like
R, M, ‘minimal majority’, ‘equal shares’, and ‘high-low’, this measure is insensitive to
certain transfers, notably in the middle income ranges (you can redistribute income
from a person at the sixth percentile to a person at the ninety-fourth without
changing the semi-decile ratio). In my opinion this is a serious weakness, but Wiles
recommended the semi-decile ratio as focusing on the essential feature of income
inequality.

Rankings
Wiles and Markowski (1971) argued for a presentation of the facts about inequality
that captures the whole distribution, since conventional inequality measures are a
type of sophisticated average, and ‘the average is a very uninformative concept’ (1971,
p- 351). In this respect! their appeal is similar in spirit to that of Sen and Foster (1997,
Chapter 3) who suggest using the Lorenz curve to rank income distributions in a
‘quasi-ordering’—in other words a ranking where the arrangement of some of the
items is ambiguous. An alternative approach to this notion of ambiguity is the use of
‘fuzzy’ inequality discussed in Basu (1987) and Ok (1995).

The method of percentiles was used extensively by Lydall (1959) and Polanyi
and Wood (1974); for recent applications to trends in the earnings distribution and
the structure of wages see Atkinson (2007a) and Harvey and Bernstein (2003). The

1 But only in this respect, since they reject the Lorenz curve as an ‘inept choice’, preferring to
use histograms instead.
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formalization of this approach as a ‘comparative function’ was suggested by Esberger
and Malmquist (1972).

B.3 Chapter 3

The dataset used for the example on page 72 is given in the file ‘LIS comparison’ on
the website. The artificial data used for the example in Tables 3.3 and 3.4 are in the
file ‘East West'.

Social Welfare Functions

The traditional view of social welfare functions is admirably and concisely expounded
in Graaff (1957). One of the principal difficulties with these functions, as with
the physical universe, is—where do they come from? On this technically difficult
question, see Boadway and Bruce (1984, Chapter 5), Gaertner (2006), and Sen (1970,
1977). If you are sceptical about the practical usefulness of SWFs you may wish to
note some other areas of applied economics where SWFs similar to those discussed in
the text have been employed. They are introduced to derive interpersonal weights
in applications of cost-benefit analysis, and in particular into project appraisal in
developing countries—see Layard (1994), Little and Mirrlees (1974, Chapter 3), and
Salanié (2000, Chapters 1, 2). Applications of SWF analysis include taxation design
(Atkinson and Stiglitz 1980, Salanié 2003, Tuomala 1990), the evaluation of the effects
of regional policy (Brown 1972, pp. 81-84), the impact of tax legislation (Mera 1969),
and measures of national income and product (Sen 1976b).

As we noted when considering the basis for concern with inequality (pages 12 and
179) there is a connection between inequality and risk. This connection was made
explicit in Atkinson’s seminal article (Atkinson 1970) where the analogy between
risk aversion and inequality aversion was also noted. However, can we just read
across from private preferences on risk to social preferences on inequality? Amiel
et al. (2008) show that the phenomenon of preference reversals may apply to social
choice amongst distributions in a manner that is similar to that observed in personal
choice amongst lotteries. However, experimental evidence suggests that individuals’
attitude to inequality (their degree of inequality aversion ¢) is sharply distinguished
from their attitude to risk as reflected in their measured risk aversion—Kroll and
Davidovitz (2003), Carlsson et al. (2005); estimates of inequality aversion have been
made using classroom experiments (Amiel et al. 1999) and from representative sample
survey evidence (Pirttild and Uusitalo 2010). Estimates of inequality aversion across
country (based on data from the World Bank’s World Development Report) are
discussed in Lambert et al. (2003); an interesting study on changes over time in
attitudes to inequality in one country is to be found in Grosfeld and Senik (2010).
If we were to interpret U as individual utility derived from income we would then
interpret € as the elasticity of marginal utility of income, and then one could perhaps
estimate this elasticity directly from surveys of subjective happiness: this is done
in Layard et al. (2008). Cowell and Gardiner (2000) survey methods for estimating
this elasticity and HM Treasury (2003), page 94, provides a nice example of how
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such estimates can be used to underpin policy making. Ebert and Welsch (2009)
examine the extent to which conventional inequality measures can be used to
represent rankings of income distributions as reflected in survey data on subjective
well-being.

The dominance criterion associated with quantile ranking (or Parade ranking) on
page 33 and used in Theorem 1 is known as first-order dominance. The concept of
second-order dominance refers to the ranking by generalized Lorenz curves used in
Theorem 3 (the shares dominance used in Theorem 2 can be seen as a special case
of second-order dominance for a set of distributions that all have the same mean).
First-order dominance, principles of social welfare, and Theorem 1 are discussed in
Saposnik (1981, 1983). The proofs of Theorems 2 and 4, using slightly more restrictive
assumptions than necessary, were established in Atkinson (1970) who drew heavily
on an analogy involving probability theory; versions of these two theorems requiring
weaker assumptions but rather sophisticated mathematics are found in Dasgupta et al.
(1973), Kolm (1969), and Sen and Foster (1997, pp. 49-58). In fact a lot of this work
was anticipated by Hardy et al. (1934, 1952); Marshall and Olkin (1979) develop
this approach and cover in detail relationships involving Lorenz curves, generalized
Lorenz curves, and concave functions: readers who are happy with an undiluted
mathematical presentation may find this the most useful single reference on this part
of the subject (see also Arnold 1987).

Shorrocks (1983) introduced the concept of the generalized Lorenz curve and
proved Theorem 3. As a neat logical extension of the idea Moyes (1989) showed that
if you take income and transform it by some function ¢ (for example by using a
tax function, as in the exercises on page 38) then the generalized Lorenz ordering of
distributions is preserved if and only if ¢ is concave—see also page 181 above. Iritani
and Kuga (1983) and Thistle (1989a, 1989b) discuss the interrelations between the
Lorenz curve, the generalized Lorenz curve, and the distribution function. A further
discussion and overview of these topics is to be found in Lambert (2001).

Where Lorenz curves intersect we know that unambiguous inequality comparisons
cannot be made without some further restriction, such as imposing a specific inequal-
ity measure. However, it is also possible to use the concept of third-order dominance
discussed in Atkinson (2008) and Davies and Hoy (1995). For corresponding results
concerning generalized Lorenz curves see Dardanoni and Lambert (1988).

SWF-Based Inequality Measures

For the relationship of SWFs to inequality measurement, either in general form,
or the specific type mentioned here, see Atkinson (1974, p. 63; 1983, pp. 56-57),
Blackorby and Donaldson (1978, 1980), Champernowne and Cowell (1998), Dagum
(1990), Dahlby (1987), Schwartz and Winship (1980), Sen (1992), and Sen and
Foster (1997). The formal relationships between inequality and social welfare are
discussed in Ebert (1987) and Dutta and Esteban (1992). For a general discussion
of characterizing social welfare orderings in terms of degrees of inequality aversion
see Bosmans (2007a). The association of the Rawls (1971) concept of justice (where
society gives priority to improving the position of the least advantaged person)
with a social welfare function exhibiting extreme inequality aversion is discussed
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in Arrow (1973), Hammond (1975), Sen (1974, pp. 395-98), and Bosmans (2007b).
Lambert (1980) provides an extension of the Atkinson approach using utility shares
rather than income shares. Inequality measures of the type first suggested by Dalton
(1920) are further discussed by Aigner and Heins (1967) and Bentzel (1970). Kolm
(1976a) suggests a measure based on an alternative to assumption 5, namely constant
absolute inequality aversion (see page 165 above), so that as we increase a person’s
income y by one unit (pound, dollar, etc.) his welfare weight U’ drops by «% where
« is the constant amount of absolute inequality aversion: this approach leads to an
inequality measure which does not satisfy the principle of scale independence. He also
suggests a measure generalizing both this and Atkinson’s measure. See also Bossert and
Pfingsten (1990) and Yoshida (1991). The implications of using absolute rather than
relative measures in analysing world income distribution are examined in Atkinson
and Brandolini (2009a). The SWF method is interpreted by Meade (1976, Chapter 7
and appendix) in a more blatantly utilitarian fashion; his measure of ‘proportionate
distributional waste’ is based on an estimation of individual utility functions. Ebert
(1999) suggests a decomposable inequality measure that is a kind of ‘inverse’ of the
Atkinson formula.

An ingenious way of extending dominance results to cases where individuals differ
in their needs as well as their incomes is the concept known as sequential dominance
(Atkinson and Bourguignon 1982, 1987). Further discussion of multidimensional
aspects of inequality are to be found in Diez et al. (2007), Maasoumi (1986, 1989),
Rietveld (1990), Savaglio (2006), and Weymark (2006); multidimensional inequality
indices are discussed by Tsui (1995).

Inequality and Information Theory

The types of permissible ‘distance’ function, and their relationship with inequality
are discussed in Cowell and Kuga (1981); Love and Wolfson (1976) refer to a similar
concept as the ‘strength-of-transfer effect’. The special relationship of the Herfindahl
index and the Theil index to the strong principle of transfers was first examined in
Kuga (1973). Krishnan (1981) (see also reply by Allison 1981) discusses the use of the
Theil index as a measure of inequality interpreted in terms of average distance. Kuga
(1980) shows the empirical similarities of the Theil index and the Gini coefficient,
using simulations.

The Herfindahl (1950) index (closely related to ¢2, or to Francis’ standard average
square difference) was originally suggested as a measure of concentration of indi-
vidual firms—see Rosenbluth (1955). Several other inequality measures can be used
in this way, notably other members of the E, family. The variable corresponding to
income y may then be taken to be a firm’s sales. However, one needs to be careful
about this analogy since inequality among persons and concentration among firms
are rather different concepts in several important ways: (i) the definition of a firm is
often unclear, particularly for small production units; (ii) in measuring concentration
we may not be very worried about the presence of tiny sales shares of many small
firms, whereas in measuring inequality we may be considerably perturbed by tiny
incomes received by a lot of people—see Hannah and Kay (1977). The relationship
between the generalized entropy measures and the Lorenz curves is examined further
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in Rohde (2008) and the problem of capturing Lorenz orderings by a small number of
inequality measures is considered by Shorrocks and Slottje (2002).

A reworking of the information theory analogy leads us to a closely related class of
measures that satisfy the strong principle of transfers, but where the average of the
distance of actual incomes from inequality is found by using population shares rather
than income shares as weights, thus:

ot oo ()]

—compare equation (3.6) on page 58. The special case B=0 which becomes
>, log(p/yi)/n (the MLD index) was already discussed in Theil (1967, Chapter 4,
p- 126 and appendix). An ordinally equivalent variant of Theil’s index is used in
Marfels (1971); see also Gehrig (1988). Jasso (1980) suggests that an appropriate
measure of justice evaluation for an individual is log(actual share / just share). From
this it is easy to see that you will get a generalized entropy measure with parameter
0 = 0 (equivalently Atkinson index with € = 1).

Building an Inequality Measure

The social value judgements implied by the use of the various ad hoc inequality
measures in Chapters 2 and 3 are analysed in Kondor (1975) who extends the
discussion in the works of Atkinson, Champernowne, and Sen cited in the notes to
Chapter 2. The question of what happens to inequality measures when all incomes
are increased or when the population is replicated or merged with another population
is discussed in Aboudi et al. (2010), Frosini (1985), Eichhorn and Gehrig (1982), Kolm
(1976a, 1976b), and Salas (1998). Shorrocks and Foster (1987) examine the issue of
an inequality measure’s sensitivity to transfers in different parts of the distribution
and Barrett and Salles (1998) discuss classes of inequality measures characterized by
their behaviour under income transfers; Lambert and Lanza (2006) analyse the effect
on inequality of changing isolated incomes. The Atkinson and generalized entropy
families are examples of the application of the concept of the quasi-linear mean,
which is discussed in Hardy et al. (1934, 1952) and Chew (1983).

Distributional principles that can be applied when households are not homoge-
neous are discussed in Ebert (2007) and Shorrocks (2004). The axiomatic approach
to inequality measurement discussed on page 66 is not of course restricted to the
generalized entropy family; with a suitable choice of axiom the approach can be
extended to pretty well any inequality measure you like: for example see Thon's
(1982) axiomatization of the Gini coefficient, or Foster (1983) on the Theil index.
The validity of standard axioms when viewed in the light of people’s perceptions
of inequality is examined in Amiel and Cowell (1992, 1994a, 1999) and Cowell
(1985a); for a discussion and survey of this type of approach see Amiel (1999) and
Kampelmann (2009). The problematic cases highlighted in the examples on page 38
and 65 are based on Cowell (1988a). Ebert (1988) discusses the principles on which
a generalized type of the relative mean deviation may be based and Ebert (2009)
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addresses ways of axiomatizing inequality that will be consistent with the apparently
heterodox views illustrated in Question 4 on page 75.

The normative significance of decomposition is addressed by Kanbur (2006). Exam-
ples of approaches to inequality measurement that explicitly use criteria that may
conflict with decomposability include basing social welfare on income satisfaction in
terms of ranks in the distribution (Hempenius 1984), the use of income gaps (Preston
2007), the use of reference incomes to capture the idea of individual ‘complaints’
about income distribution (Cowell and Ebert 2004, Devooght 2003, Temkin 1993)—
see also the discussion on page 195.

B.4 Chapter 4

The Idea of a Model
For an excellent coverage of the use of functional forms in modelling income distrib-
utions see Kleiber and Kotz (2003).

The Lognormal Distribution

Most texts on introductory statistical theory give a good account of the normal
distribution—for example Berry and Lindgren (1996), Casella and Berger (2002), or
Freund and Perles (2007). The standard reference on the lognormal and its properties
(Aitchison and Brown 1957) also contains a succinct account of a simple type of ran-
dom process theory of income development. A summary of several such theories can
be found in Bronfenbrenner (1971) and in Brown (1976). On some of the properties
of the lognormal Lorenz curve, see also Aitchison and Brown (1954).

The Pareto Distribution

An excellent introduction to Pareto’s law is provided by Persky (1992). Pareto’s orig-
inal work can be consulted in Pareto (1896, 1965, 2001) or in Pareto (1972), which
deals in passing with some of Pareto’s late views on the law of income distribution;
the development of Pareto’s thought on inequality is discussed in Maccabelli (2009).
Tawney (1964) argues forcefully against the strict interpretation of Pareto’s law:

It implies a misunderstanding of the nature of economic laws in general, and of Pareto’s
laws in particular, at which no one, it is probable, would have been more amused than
Pareto himself, and which, indeed, he expressly repudiated in a subsequent work. It is to
believe in economic Fundamentalism, with the New Testament left out, and the Books of
Leviticus and Deuteronomy inflated to unconscionable proportions by the addition of new
and appalling chapters. It is to dance naked, and roll on the ground, and cut oneself with
knives, in honour of the mysteries of Mumbo Jumbo.

However, I do not find his assertion of Pareto’s recantation convincing—see Pareto
(1972); see also Pigou (1952, pp. 650 ff). Oversimplified interpretations of the law
have persisted—Adams (1976) suggested a ‘golden section’ value of a =2/[\/5—1]
as a cure for inflation. Van der Wijk’s (1939) law is partially discussed in Pen (1974,
Chapter 6); in a sense it is a mirror image of the Bonferroni index (Bonferroni 1930)
which is formed from an average of ‘lower averages'—see Chakravarty (2007). Several
of the other results in the text are formally proved in Chipman (1974). Nicholson
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(1969, pp. 286-92) and Bowman (1945) give a simple account of the use of the Pareto
diagram. The discussion of a random process model leading to a Pareto distribution
is presented in Champernowne (1953, 1973) and the non-technical reader will find
a simple summary in Pen (1971, 1974). The Pareto distribution as an equilibrium
distribution of a wealth model is treated in Wold and Whittle (1957) and Champer-
nowne and Cowell (1998), Chapter 10. A recent overview of Pareto-type distributions
in economics and finance is provided by Gabaix (2008).

How Good Are the Functional Forms?

The example of earnings displayed on page 96 can be reproduced from file ‘NES’
on the website; the income example of page 88 is taken from the website file ‘ET
income distribution’ again, and the wealth example on page 97 is based on file ‘IR
wealth’. Evidence on the suitability of the Pareto and lognormal distributions as
approximations to actual distributions of earnings and of income can be found in the
Royal Commission on the Distribution of Income and Wealth (1975, Appendix C;
1976, Appendix E).

In discussing the structure of wages in Copenhagen in 1953 Bjerke (1970) showed
that the more homogenous the occupation, the more likely it would be that the
distribution of earnings within it was lognormal. Weiss (1972) shows the satisfactory
nature of the hypothesis of lognormality for graduate scientists’ earnings in different
areas of employment—particularly for those who were receiving more than $10,000 a
year. Hill (1959) shows that merging normal distributions with different variances
leads to ‘leptokurtosis’ (more of the population in the ‘tails’ than expected from
a normal distribution)—a typical feature of the distribution of the logarithm of
income. Other useful references on the lognormal distribution in practice are Fase
(1970), Takahashi (1959), and Thatcher (1968). Evidence for lognormality is dis-
cussed in the case of India (Rajaraman 1975), Kenya (Kmietowicz and Webley 1975),
Iraq (Kmietowicz 1984), and China (Kmietowicz and Ding 1993). Kmietowicz (1984)
extends the idea of lognormality of the income distribution to bivariate lognormality
of the joint distribution of income and household size. Battistin et al. (2009) demon-
strate that consumption is ‘more lognormal’ than income and explain the economic
reasons for this phenomenon.

Atkinson (1975) and Soltow (1975) produce evidence on the Pareto distribution and
the distribution of wealth in the UK and the USA of the 1860s respectively. Klass et al.
(2006) do this using the Forbes 400; Clementi and Gallegati (2005) examine Pareto’s
law for Germany, the UK, and the USA. For further evidence on the variability of
Pareto’s a in the USA, see Johnson (1937), a cautious supporter of Pareto. The Paretian
property of the tail of the wealth distribution is also demonstrated admirably by the
Swedish data examined by Steindl (1965) where a is about 1.5 to 1.7.

Some of the less orthodox applications of the Pareto curve are associated with
‘Zipf's law’ (Zipf 1949) which has been fruitfully applied to the distribution of city
size (Nitsch 2005). Harold T. Davis, who has become famous for his theory of the
French Revolution in terms of the value of Pareto’s a under Louis XVI, produces
further evidence on the Pareto law in terms of the distribution of wealth in the pre-
Civil War southern states (wealth measured in terms of number of slaves) and of the
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distribution of income in England under William the Conqueror—see Davis (1954).
For the latter example (based on the Domesday Book, 1086) the fit is surprisingly
good, even though income is measured in ‘acres’—i.e. that area of land which pro-
duces 72 bushels of wheat per annum. The population covered includes Cotters, Serfs,
Villeins, Sokemen, Freemen, Tenants, Lords and Nobles, Abbots, Bishops, the Bishop
of Bayeux, the Count of Mortain, and of course King William himself.

However, Davis’s (1941) interpretation of these and other intrinsically interesting
historical excursions as evidence for a ‘mathematical theory of history’ seems mildly
bizarre: supposedly if a is too low or too high a revolution (from the left or the right,
respectively) is induced. Although there is clearly a connection between extreme
economic inequality and social unrest, seeking the mainspring of the development
of civilization in the slope of a line on a double-log graph does not appear to be
a rewarding or convincing exercise. There is a similar danger in misinterpreting a
dynamic model such as of Champernowne (1953), in which a given pattern of social
mobility always produces, eventually, a unique Pareto distribution, independent
of the income distribution originally prevailing. Bernadelli (1944) postulates that
a revolution having redistribution as an aim will prove futile because of such a
mathematical process. Finding the logical and factual holes in this argument is left as
an exercise for you.

Other Distributions

Finally, a mention of other functional forms that have been claimed to fit observed
distributions more or less satisfactorily (see the Technical Appendix page 158). Some
of these are generalizations of the lognormal or Pareto forms, such as the three-
parameter lognormal (Metcalf 1969), or the generalized Pareto-Levy law, which
attempts to take account of the lower tail (Arnold 1983, Mandelbrot 1960). Indeed,
the formula we have described as the Pareto distribution was only one of many
functions suggested by Pareto himself; it may thus be more accurately described as
a ‘Pareto type I’ distribution (Hayakawa 1951, Quandt 1966). Champernowne (1952)
provides a functional form which is close to the Pareto in the upper tail and which
fits income distributions quite well; some technical details on this are discussed in
Harrison (1974), with empirical evidence in Thatcher (1968)—see also Harrison (1979,
1981) and Sarabia et al. (1999).

Other suggestions are Beta distribution (Slottje 1984, Thurow 1970), the Gamma
distribution (Salem and Mount 1974, McDonald and Jensen 1979), the sech?2-
distribution, which is a special case of the Champernowne (1952) distribution (Fisk
1961), and the Yule distribution (Simon 1955, 1957; Simon and Bonini 1958); see
also Campano (1987) and Ortega et al. (1991). Evans et al. (1993) and Kleiber and
Kotz (2003) provide a very useful summary of the mathematical properties of many of
the above. The Singh and Maddala (1976) distribution is discussed further in Cramer
(1978), Cronin (1979), McDonald and Ransom (1979), Klonner (2000) (first-order
dominance), and Wilfling and Krdmer (1993) (Lorenz curves); cf also the closely
related model by Dagum (1977). A generalized form of the Gamma distribution
has been used by Esteban (1986), Kloek and Van Dijk (1978), and Taille (1981). An
overview of several of these forms and their interrelationships is given in McDonald
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(1984) as part of his discussion of the generalized Beta distribution of the second
kind; on this distribution see also Bordley et al. (1996), Jenkins (2009), Majumder
and Chakravarty (1990), McDonald and Mantrala (1995), Parker (1999), Sarabia et al.
(2002), Wilfling (1996), and for an implementation with Chinese data see Chotika-
panich et al. (2007). Alternative approaches to parameterizing the Lorenz curve are
discussed in Basmann et al. (1990, 1991), and Kakwani and Podder (1973).

Other functional forms based on the exponential distribution are considered in
Jasso and Kotz (2007). Some of the Lorenz properties noted for the lognormal and
for the Pareto hold for more general functional forms—see Arnold et al. (1987) and
Taguchi (1968).

B.5 Chapter 5

The Data

The UK data used for Fig. 5.1 are from Inland Revenue Statistics (see file ‘IR income’
on the website), and the US data in Table 5.1 from Internal Revenue Service, Statistics
of Income: Individual Tax Returns (see file ‘IRS Income Distribution’). The UK data used
for Figs 5.2-5.7 are taken from the Households Below Average Income dataset (HBAI),
which is now the principal data source for UK income distribution; summary charts
and results are published in Department of Work and Pensions (2009).

For a general introduction to the problem of specifying an income or wealth
variable see Atkinson (1983). The quality of the administrative data on personal
incomes—derived from tax agencies or similar official sources—depends crucially on
the type of tax administration and government statistical service for the country
in question. On the one hand extremely comprehensive and detailed information
about income and wealth (including cross-classifications of these two) is provided, for
example, by the Swedish Central Statistical Bureau, on the basis of tax returns. On the
other, one must overcome almost insuperable difficulties where the data presentation
is messy, incomplete, or designedly misleading. An excellent example of the effort
required here is provided by the geometric detective work of Wiles and Markowski
(1971) and Wiles (1974) in handling Soviet earnings distribution data. Fortunately
for the research worker, some government statistical services modify the raw tax
data so as to improve the concept of income and to represent low incomes more
satisfactorily. Stark (1972) gives a detailed account of the significance of refinements
in the concepts of income using the UK data; for an exhaustive description of these
data and their compilation see Stark in Atkinson et al. (1978) and for a quick summary,
the Royal Commission on the Distribution of Income and Wealth (1975, Appendices
F and H). For a discussion of the application of tax data to the analysis of top
incomes see Atkinson (2007b). As for survey data on incomes, the HBAI in the UK
draws on the Family Resources Survey and Family Expenditure Survey—see Frosztega
(2000) for a detailed consideration of the underlying income concept: UK datasets are
available from the UK Data Archive (http://www.data-archive.ac.uk). Summary charts
and results for HBAI are published in Department of Work and Pensions (2009) and
Brewer et al. (2008) provide a useful critique of this source. On the widely used Current
Population Survey (CPS) data (see Question 3 in Chapter 2) in the USA see Burkhauser
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et al. (2004) and Welniak (2003). A general overview of inequality in the USA is
provided in Bryan and Martinez (2008), Reynolds (2006), and Ryscavage (1999). On
US data and the quality of sample surveys in particular it is worth checking the two
classic references Budd and Radner (1975) and Ferber et al. (1969). Since publication
of the first edition of this book, large comprehensive datasets of individual incomes
have become much more readily available and it is impossible to do justice to them.
One that deserves attention from the student of inequality are the early example
based on data from the Internal Revenue Service and Survey of Economic Opportu-
nity discussed in Okner (1972, 1975); an extremely useful source of internationally
comparable microdata in incomes (and much else) is the Luxembourg Income Study
(http://www.lis-project.org). An early and comprehensive source of US longitudi-
nal data is the Panel Study of Income Dynamics (http://psidonline.isr.umich.edu/)
described in Hill (1992); more recent European examples of longitudinal data are
the British Household Panel Survey (http://www.iser.essex.ac.uk/survey/bhps) and
the German Socio-Economic Panel (http://www.diw-berlin.de/de/soep). The clas-
sic reference on wealth data in the UK is Atkinson and Harrison (1978) and an
important resource for international comparisons of wealth distributions is pro-
vided by the Luxembourg Wealth Study (Sierminska et al. 2006), OECD (2008)
Chapter 10.

A good statement of principles concerning the income concept is provided by
the Canberra Group (2001) report. Several writers have tried to combine theoretical
sophistication with empirical ingenuity to extend income beyond the conventional
definition. Notable among these are the income-cum-wealth analysis of Weisbrod
and Hansen (1968), and the discussion by Morgan et al. (1962) of the inclusion of
the value of leisure time as an income component. An important development for
international comparisons is the Human Development Index which has income as
just one component (Anand and Sen 2000); Fleurbaey and Gaulier (2009) in similar
spirit propose a measure of living standards for international comparisons based on
GDP per capita adjusted for personal and social characteristics including inequality;
perhaps unsurprisingly the ranking of countries by this measure differs substantially
from the conventional GDP ranking. Goodman and Oldfield (2004) contrast income
inequality and expenditure inequality in the UK context. Stevenson and Wolfers
(2008) examine the way inequality in happiness has changed in the USA.

In Morgan (1962), Morgan et al. (1962), and Prest and Stark (1967) the effect
of family grouping on measured inequality is considered. For a fuller discussion of
making allowance for income sharing within families and the resulting problem of
constructing ‘adult equivalence’ scales, consult Abel-Smith and Bagley (1970); the
internationally standard pragmatic approach to equivalization is the OECD scale
(see, for example, Atkinson et al. 1995) although many UK studies use a scale based
on McClements (1977); the idea that equivalence scales are revealed by community
expenditures is examined in Olken (2005). The relationship between equivalence
scales and measured inequality is examined in Buhmann et al. (1988), Coulter et al.
(1992b), and Jenkins and Cowell (1994b): for a survey see Coulter et al. (1992a).
The fact that averaging incomes over longer periods reduces the resulting inequality
statistics emerges convincingly from the work of Hanna et al. (1948) and Benus and
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Morgan (1975). The key reference on the theoretical and empirical importance of
price changes on measured inequality is Muellbauer (1974); see also Crawford and
Smith (2002), Hobijn and Lagakos (2005), and Slottje (1987). A further complication
which needs to be noted from Metcalf (1969) is that the way in which price changes
affect low-income households may depend on household composition; whether there
is a male bread-winner present is particularly important. On the effect of non-
response on income distribution and inequality refer to Korinek et al. (2006).

International comparisons of datasets on inequality and poverty are provided by
Ferreira and Ravallion (2009); an early treatment of the problems of international
comparison of data is found in Kuznets (1963, 1966) and Atkinson and Brandolini
(2009b) provide an excellent general introduction to issues of data quality. Appropri-
ate price adjustments to incomes can be especially problematic when making interna-
tional comparisons. A standard approach is to use an index of Purchasing Power Parity
(PPP) rather than converting incomes at nominal exchange rates. The issues involved
in constructing PPP are treated in Heston et al. (2001); the method of imputation
of PPP can have a substantial impact on estimates of between-country inequality
and hence on the picture of global inequality; the topic is treated exhaustively in
Anand and Segal (2008), Kravis et al. (1978a, 1978b), and Summers and Heston (1988,
1991). The issue of international comparability of income distribution data is one of
the main reasons for the existence of the Luxembourg Income Study: see Smeeding
et al. (1990) for an introduction and a selection of international comparative stud-
ies; Lorenz comparisons derived from this data source are in the website file ‘LIS
comparison’. On the use of data in OECD countries see Atkinson and Brandolini
(2001) and on international comparisons of earnings and income inequality refer
to Gottschalk and Smeeding (1997). Atkinson and Micklewright (1992) compare the
income distributions in Eastern European economies in the process of transition.
Other important international sources for studying inequality are Deininger and
Squire (1996) and also UNU-WIDER (2005) which provides Gini indices drawn from
a large number of national sources.

Beckerman and Bacon (1970) provide a novel approach to the measurement of
world (i.e. inter-country) inequality by constructing their own index of ‘income per
head’ for each country from the consumption of certain key commodities. Becker
et al. (2005) examine the effect on trends in world inequality of trying to take into
account people’s quality of life.

Computation of the Inequality Measures

For detail on computation of point estimates of inequality go to the Technical Appen-
dix. For an excellent general text on empirical methods including computation of
inequality measures and other welfare indicators see Deaton (1997). For a discussion
of how to adapt standard methodology to estimation problems in small areas with
few observations see Tarozzi and Deaton (2009).

Decomposition techniques have been widely used to analyse spatial inequality
(Shorrocks and Wan 20035) including China (Yu et al. 2007) and Euroland (Beblo and
Knaus 2001) and for the world as a whole (Novotny 2007). For a systematic analysis
of world inequality using (fully decomposable) generalized entropy indices see Berry
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et al. (1983a, 1983b), Bourguignon and Morrisson (2002), Sala-i-Martin (2006), Ram
(1979, 1984, 1987, 1992), and Theil (1979b, 1989); Milanovic and Yitzhaki (2002) use
the (not fully decomposable) Gini coefficient.

Appraising the Calculations

An overview of many of the statistical issues is to be found in Cowell (1999) and
Nygard and Sandstrom (1981, 1985). If you are working with data presented in
the conventional grouped form, then the key reference on the computation of the
bounds Ji, Ju is Gastwirth (1975). Now, in addition to the bounds on inequality
measures that we considered in the text, Gastwirth (1975) shows that if one may
assume ‘decreasing density’ over a particular income interval (i.e. the frequency
curve is sloping downwards to the right in the given income bracket) then one can
calculate bounds J{, J{; that are sharper—i.e. the bounds J{, J|; lie within the range
of inequality values (Ji, Jy) which we computed: the use of these refined bounds
leaves the qualitative conclusions unchanged, though the proportional gap is reduced
a little. The problem of finding such bounds is considered further in Cowell (1991).
The special case of the Gini coefficient is treated in Gastwirth (1972) and McDonald
and Ransom (1981); the properties of bounds for grouped data are further discussed
in Gastwirth et al. (1986); Mehran (1975) shows that you can work out bounds on
G simply from a set of sample observations on the Lorenz curve without having to
know either mean income or the interval boundaries a;, a, . .., a1 and Hagerbaumer
(1977) suggests the upper bound of the Gini coefficient as an inequality measure in its
own right. In Gastwirth (1972, 1975) there are also some refined procedures for taking
into account the open-ended interval forming the top income bracket—an awkward
problem if the total amount of income in this interval is unknown. Ogwang (2003)
discusses the problem of putting bounds on Gini coefficient when data are sparse.
As an alternative to the methods discussed in the Technical Appendix (using the
Pareto interpolation, or fitting Paretian density functions), the procedure for inter-
polating on Lorenz curves introduced by Gastwirth and Glauberman (1976) works
quite well.

Cowell and Mehta (1982) investigate a variety of interpolation methods for
grouped data and also investigate the robustness of inequality estimates under alter-
native grouping schemes. Aghevli and Mehran (1981) address the problem of optimal
choice of the income interval boundaries used in grouping by considering the set of
values {ay, ao, ..., ax} which will minimize the Gini coefficient; Davies and Shorrocks
(1989) refine the technique for larger datasets.

For general information on the concept of the standard error see Berry and Lind-
gren (1996) or Casella and Berger (2002). On the sampling properties of inequality
indices generally see Victoria-Feser (1999). Formulas for standard errors of specific
inequality measures can be found in the following references: Kendall et al. (1994,
sec. 10.5) (relative mean deviation, coefficient of variation), David (1968, 1981),
Nair (1936) (Gini’s mean difference), Gastwirth (1974a) (relative mean deviation),
Aitchison and Brown (1957, p. 39) (variance of logarithms). For more detailed analysis
of the Gini coefficient see Davidson (2009), Deltas (2003), Gastwirth et al. (1986),
Giles (2004), Glasser (1962), Lomnicki (1952), Modarres and Gastwirth (2006), Nygard
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and Sandstrom (1989), Ogwang (2000, 2004), and Sandstrom et al. (1985, 1988).
Allison (1978) discusses issues of estimation and testing based on microdata using the
Gini coefficient, coefficient of variation, and Theil index. The statistical properties
of the generalized entropy and related indices are discussed by Cowell (1989) and
Thistle (1990). A thorough treatment of statistical testing of Lorenz curves is to be
found in Beach and Davidson (1983), Beach and Kaliski (1986), Beach and Richmond
(1985), and Davidson and Duclos (2000); for generalized Lorenz estimation refer to
Bishop et al. (1989), and Bishop et al. (1989). See also Hasegawa and Kozumi (2003)
for a Bayesian approach to Lorenz estimation and Schluter and Trede (2002) for
problems of inference concerning the tails of Lorenz curves. For a treatment of the
problem of estimation with complex survey design go to Biewen and Jenkins (2006),
Cowell and Jenkins (2003), Binder and Kovacevic (1995), Bhattacharya (2007), and
Kovacevic and Binder (1997). Cowell and Victoria-Feser (2003) treat the problem of
estimation and inference when the distribution may be censored or truncated and
Cowell and Victoria-Feser (2007, 2008) discuss the use of a Pareto tail in a ‘semi-
parametric’ approach to estimation from individual data. The effect of truncation
bias on inequality judgements is also discussed in Fichtenbaum and Shahidi (1988)
and Bishop et al. (1994); the issue of whether ‘top-coding’ (censoring) of the CPS data
makes a difference to the estimated trends in US income inequality is analysed in
Burkhauser et al. (2008). So-called ‘bootstrap’ or resampling methods are dealt with
by Biewen (2002), Davidson and Flachaire (2007), and Van Kerm (2002)—see also
Davison and Hinkley (1997). For an interesting practical example of the problem of
ranking distributions by inequality when you take into account sampling error, see
Horrace et al. (2008).

On the robustness properties of measures in the presence of contamination or
outliers see Cowell and Victoria-Feser (1996, 2002, 2006) and for the way inequality
measures respond to extreme values go to Cowell and Flachaire (2007). Chesher
and Schluter (2002) discuss more generally the way measurement errors affect the
comparison of income distributions in welfare terms.

Fitting Functional Forms

Refer to Chotikapanich and Griffiths (2005) on the problem of how to choose a
functional form for your data and to Maddala and Singh (1977) for a general dis-
cussion of estimation problems in fitting functional forms. Ogwang and Rao (2000)
use hybrid Lorenz curves as a method of fit. If you want to estimate lognormal curves
from grouped or ungrouped data, you should refer to Aitchison and Brown (1957,
pp- 38-43, 51-54) first. Baxter (1980), Likes (1969), Malik (1970), and Quandt (1966)
deal with the estimation of Pareto’s a for ungrouped data. Now the ordinary least
squares method, discussed by Quandt, despite its simplicity has some undesirable
statistical properties, as explained in Aigner and Goldberger (1970). In the latter
paper you will find a discussion of the difficult problem of providing maximum
likelihood estimates for a from grouped data. The fact that in estimating a Pareto
distribution a curve is fitted to cumulative series which may provide a misleadingly
good fit was noted in Johnson (1937), while Champernowne (1956) provided the
warning about uncritical use of the correlation coefficient as a criterion of suitability
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of fit. The suggestion of using inequality measures as an alternative basis for testing
goodness-of-fit was first put forward by Gastwirth and Smith (1972), where they test
the hypothesis of lognormality for United States IRS data; see also Gail and Gastwirth
(1978b, 1978a). To test for lognormality one may examine whether the skewness and
the kurtosis (‘peakedness’) of the observed distribution of the logarithms of incomes
are significantly different from those of a normal distribution; for details consult
Kendall et al. (1999). Hu (1995) discusses the estimation of Gini from grouped data
using a variety of specific functional forms.

B.6 Technical Appendix

For a general technical introduction see Duclos and Araar (2006) and Cowell (2000);
functional forms for distributions are discussed in Kleiber and Kotz (2003) and Evans
etal. (1993).

The formulas in the Technical Appendix for the decomposition of inequality mea-
sures are standard—see Bourguignon (1979), Cowell (1980), Das and Parikh (1981,
1982), and Shorrocks (1980).

For a characterization of some general results in decomposition, see Bosmans and
Cowell (2010), Chakravarty and Tyagarupananda (1998, 2000), Cowell (2006), Foster
and Shneyerov (1999), Kakamu and Fukushige (2009), Toyoda (1980), Shorrocks
(1984, 1988), and Zheng (2007). Establishing the main results typically requires the
use of functional equations techniques, on which see Aczél (1966). For applications
of the decomposition technique, see the references on spatial and world inequality in
Chapter 5 (page 192) and also Anand (1983), Borooah et al. (1991), Ching (1991),
Cowell (1984, 1985b), Frosini (1989), Glewwe (1986), Mookherjee and Shorrocks
(1982), and Paul (1999).

Decomposition by income components is discussed by Satchell (1978), Shorrocks
(1982), and Theil (1979a). Applications to Australia are to be found in Paul (2004), to
New Zealand in Podder and Chatterjee (2002), and to UK in Jenkins (1995). The issues
underlying an application of the Shapley value to decomposition analysis are exam-
ined in Sastre and Trannoy (2002). The use of partitions into subgroups as a method of
‘explaining’ the contributory factors to inequality is dealt with in Cowell and Jenkins
(1995) and Elbers et al. (2008). Alternative pragmatic approaches to accounting for
changes in inequality are provided by Bourguignon et al. (2008), Morduch and Sicular
(2002), Fields (2003), and Jenkins and Van Kerm (2005); Cowell and Fiorio (2009)
reconcile these alternatives with conventional decomposition analysis.

The relationship between decomposition of inequality and the measurement of
poverty is examined in Cowell (1988b). As noted in Chapter 3 the decomposition
of the Gini coefficient presents serious problems of interpretation. However, Pyatt
(1976) tackles this by ‘decomposing’ the Gini coefficient into a component that
represents within-group inequality, one that gives between-group inequality, and
one that depends on the extent to which income distributions in different groups
overlap one another. The properties of the Gini when ‘decomposed’ in this way
are further discussed by Lambert and Aronson (1993), Lerman and Yitzhaki (1984,
1989), Yitzhaki and Lerman (1991), and Sastry and Kelkar (1994). Braulke (1983)
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examines the Gini decomposition on the assumption that within-group distributions
are Paretian. Silber (1989) discusses the decomposition of the Gini coefficient by
subgroups of the population (for the case of non-overlapping partitions) and by
income components.

The data in Table A.3 is based on Howes and Lanjouw (1994) and Hussain et al.
(1994). For recent decomposition analysis of China, see Kanbur and Zhang (1999,
2005), Lin et al. (2008), and Sicular et al. (2007).

196



Bibliography

Aaberge, R. (2000). Characterizations of Lorenz curves and income distributions.
Social Choice and Welfare 17, 639-53.

Aaberge, R. (2007). Gini’s nuclear family. Journal of Economic Inequality §, 305-22.

Abel-Smith, B. and C. Bagley (1970). The problem of establishing equivalent standards
of living for families of different composition. In P. Townsend (Ed.), The Concept of
Poverty. London: Heinemann.

Aboudi, R., D. Thon, and S. W. Wallace (2010). Inequality comparisons when the
populations differ in size. Journal Of Economic Inequality 8, 47-70.

Abul Naga, R. H. and T. Yalcin (2008). Inequality measurement for ordered response
health data. Journal of Health Economics 27, 1614-25.

Acz€l, ]J. (1966). Lectures on Functional Equations and their Applications. Number 9 in
Mathematics in Science and Engineering. New York: Academic Press.

Adams, K. (1976). Pareto’s answer to inflation. New Scientist 71, 534-37.

Addo, H. (1976). Trends in international value-inequality 1969-1970: an empirical
study. Journal of Peace Research 13, 13-34.

Aghevli, B. B. and F. Mehran (1981). Optimal grouping of income distribution data.
Journal of the American Statistical Association 76, 22-26.

Aigner, D. J. and A. S. Goldberger (1970). Estimation of Pareto’s law from grouped
observations. Journal of the American Statistical Association 65, 712-23.

Aigner, D. J. and A. J. Heins (1967). A social welfare view of the measurement of
income equality. Review of Income and Wealth 13(3), 12-25.

Aitchison, J. and J. A. C. Brown (1954). On the criteria for descriptions of income
distribution. Metroeconomica 6, 88-107.

Aitchison, J. and J. A. C. Brown (1957). The Lognormal Distribution. London: Cam-
bridge University Press.

Alesina, A., R. Di Tella, and R. MacCulloch (2004). Inequality and happiness: are
Europeans and Americans different? Journal of Public Economics 88, 2009-42.

Alker, H. R. (1965). Mathematics and Politics. New York: Macmillan.

Alker, H. R. J. (1970). Measuring inequality. In E. R. Tufte (Ed.), The Quantitative
Analysis of Social Problems. Reading, Massachusetts: Addison-Wesley.

Alker, H. R. J. and B. Russet (1964). On measuring inequality. Behavioral Science 9,
207-18.

Allison, P. D. (1978). Measures of inequality. American Sociological Review 43, 865-80.

Allison, P. D. (1981). Inequality measures for nominal data. American Sociological
Review 46, 371-72. Reply to Krishnan.

197



Bibliography

Allison, R. A. and J. E. Foster (2004). Measuring health inequality using qualitative
data. Journal of Health Economics 23, 505-52.

Amiel, Y. (1999). The subjective approach to the measurement of income inequality.
In J. Silber (Ed.), Handbook on Income Inequality Measurement. Dewenter: Kluwer.

Amiel, Y. and F. A. Cowell (1992). Measurement of income inequality: experimental
test by questionnaire. Journal of Public Economics 47, 3-26.

Amiel, Y. and F. A. Cowell (1994a). Income inequality and social welfare. In J. Creedy
(Ed.), Taxation, Poverty and Income Distribution, pp. 193-219. Edward Elgar.

Amiel, Y. and F. A. Cowell (1994b). Inequality changes and income growth. In
W. Eichhorn (Ed.), Models and Measurement of Welfare and Inequality, pp. 3-26.
Berlin, Heidelberg: Springer-Verlag.

Amiel, Y. and E A. Cowell (1998). Distributional orderings and the transfer principle:
a re-examination. Research on Economic Inequality 8, 195-215.

Amiel, Y. and F. A. Cowell (1999). Thinking about Inequality. Cambridge: Cambridge
University Press.

Amiel, Y., E. A. Cowell, L. Davidovitz, and A. Polovin (2008). Preference reversals and
the analysis of income distributions. Social Choice and Welfare 30, 305-30.

Amiel, Y., . A. Cowell, and W. Gaertner (2010). To be or not to be involved: a
questionnaire-experimental view on Harsanyi’s utilitarian ethics. Social Choice and
Welfare, forthcoming.

Amiel, Y., E. A. Cowell, and A. Polovin (1996). Inequality amongst the kibbutzim.
Economica 63, S63-S85.

Amiel, Y., J. Creedy, and S. Hurn (1999). Attitudes towards inequality. The Scandinavian
Journal of Economics 101, 83-96.

Anand, S. (1983). Inequality and Poverty in Malaysia. London: Oxford University Press.

Anand, S. and P. Segal (2008). What do we know about global income inequality?
Journal of Economic Literature 46, 57-94.

Anand, S. and A. K. Sen (2000). The income component of the human development
index. Journal of Human Development 1, 83-106.

Arnold, B. C. (1983). Pareto Distributions. Fairland, MD: International Cooperative
Publishing House.

Arnold, B. C. (1987). Majorization and the Lorenz Order: A Brief Introduction. Heidelberg:
Springer-Verlag.

Arnold, B. C. (1990). The Lorenz order and the effects of taxation policies. Bulletin of
Economic Research 42, 249-64.

Arnold, B. C,, P. L. Brockett, C. A. Robertson, and B. Y. Shu (1987). Generating Ordered
families of Lorenz curves by strongly unimodal distributions. Journal of Business and
Economic Statistics 5, 305-08.

Arrow, K. J. (1973). Some ordinalist-utilitarian notes on Rawls’ theory of justice.
Journal of Philosophy 70, 245-63.

Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic The-
ory 2, 244-263.

Atkinson, A. B. (1974). Poverty and income inequality in Britain. In D. Wedderburn
(Ed.), Poverty, Inequality and The Class Structure. London: Cambridge University
Press.

198



Bibliography

Atkinson, A. B. (1975). The distribution of wealth in Britain in the 1960s—the estate
duty method re-examined. In J. D. Smith (Ed.), The Personal Distribution of Income
and Wealth. New York: National Bureau of Economic Research.

Atkinson, A. B. (1983). The Economics of Inequality (Second edn.). Oxford: Clarendon
Press.

Atkinson, A. B. (2007a). The long run earnings distribution in five countries: “remark-
able stability,” u, v or w? Review of Income and Wealth 53, 1-24.

Atkinson, A. B. (2007b). Measuring top incomes: methodological issues. In A. B.
Atkinson and T. Piketty (Eds.), Top Incomes Over the 20th Century: A Contrast Between
Continental European and English-speaking Countries, Chapter 2, pp. 18-42. Oxford:
Oxford University Press.

Atkinson, A. B. (2008). More on the measurement of inequality. Journal of Economic
Inequality 6, 277-83.

Atkinson, A. B. and F. Bourguignon (1982). The comparison of multi-dimensional
distributions of economic status. Review of Economic Studies 49, 183-201.

Atkinson, A. B. and F. Bourguignon (1987). Income distribution and differences in
needs. In G. R. Feiwel (Ed.), Arrow and the Foundations of the Theory of Economic
Policy, Chapter 12, pp. 350-70. New York: Macmillan.

Atkinson, A. B. and A. Brandolini (2001). Promise and pitfalls in the use of secondary
data-sets: income inequality in OECD countries as a case study. Journal of Economic
Literature 39, 771-99.

Atkinson, A. B. and A. Brandolini (2009a, January). On analysing the world distrib-
ution of income. Bank of Italy Temi di Discussione (Working Paper) 701, Bank of
Italy, Bank of Italy Economic Research Department via Nazionale 91-00184 Rome,
Italy.

Atkinson, A. B. and A. Brandolini (2009b). On data: a case study of the evolution
of income inequality across time and across countries. Cambridge Journal of Eco-
nomics 33, 381-404.

Atkinson, A. B., J. P. E. Gordon, and A. J. Harrison (1989). Trends in the shares of top
wealth-holders in Britain 1923-1981. Oxford Bulletin of Economics and Statistics 51,
315-32.

Atkinson, A. B. and A. ]J. Harrison (1978). Distribution of Personal Wealth in Britain.
Cambridge: Cambridge University Press.

Atkinson, A. B., A. J. Harrison, and T. Stark (1978). Wealth and Personal Incomes.
London: Pergamon Press Ltd on behalf of The Royal Statistical Society and the Social
Science Research Council.

Atkinson, A. B. and J. Micklewright (1992). Economic Transformation in Eastern Europe
and the Distribution of Income. Cambridge: Cambridge University Press.

Atkinson, A. B. and T. Piketty (Eds.) (2007). Top Incomes over the 20th Century: A
Contrast Between Continental European and English-speaking countries. Oxford: Oxford
University Press.

Atkinson, A. B., L. Rainwater, and T. M. Smeeding (1995). Income Distribution in OECD
Countries: The Evidence from the Luxembourg Income Study. Number 18 in Social Policy
Studies. OECD, Paris.

199



Bibliography

Atkinson, A. B. and J. E. Stiglitz (1980). Lectures on Public Economics. Basingstoke:
McGraw Hill.

Barrett, R. and M. Salles (1995). On a generalisation of the Gini coefficient. Mathemat-
ical Social Sciences 30, 235-44.

Barrett, R. and M. Salles (1998). On three classes of differentiable inequality measures.
International Economic Review 39, 611-21.

Basmann, R. L., K. J. Hayes, J. D. Johnson, and D. J. Slottje (1990). A general functional
form for approximating the Lorenz curve. Journal of Econometrics 43, 77-90.

Basmann, R. L., K. J. Hayes, and D. J. Slottje (1991). The Lorenz curve and the mobility
function. Economics Letters 35, 105-111.

Basmann, R. L. and D. ]. Slottje (1987). A new index of income inequality—the B
measure. Economics Letters 24, 385-89.

Basu, K. (1987). Axioms for a fuzzy measure of inequality. Mathematical Social Sci-
ences 14(12), 275-88.

Batchelder, A. B. (1971). The Economics of Poverty. New York: Wiley.

Battistin, E., R. Blundell, and A. Lewbel (2009). Why is consumption more log normal
than income? Gibrat’s Law revisited. Journal of Political Economy 117(6), 1140-54.
Bauer, P. T. and A. R. Prest (1973). Income differences and inequalities. Moorgate and

Wall Street Autumn, 22-43.

Baxter, M. A. (1980). Minimum-variance unbiased estimation of the parameters of the
Pareto distribution. Metrika 27, 133-38.

Beach, C. M. and R. Davidson (1983). Distribution-free statistical inference with
Lorenz curves and income shares. Review of Economic Studies 50, 723-35.

Beach, C. M. and S. F. Kaliski (1986). Lorenz curve inference with sample weights:
an application to the distribution of unemployment experience. Applied Statis-
tics 35(1), 38-45.

Beach, C. M. and J. Richmond (1985). Joint confidence intervals for income shares
and Lorenz curves. International Economic Review 26(6), 439-50.

Beblo, M. and T. Knaus (2001). Measuring income inequality in Euroland. Review of
Income and Wealth 47, 301-20.

Becker, G. S., T. J. Philipson, and R. R. Soares (2005). The quantity and quality of life
and the evolution of world inequality. American Economic Review 95, 277-91.

Beckerman, W. and R. Bacon (1970). The international distribution of incomes. In
P. Streeten (Ed.), Unfashionable Economics. Essays in Honour of Lord Balogh. London:
Weidenfeld and Nicolson.

Bénabou, R. (2000). Unequal societies: income distribution and the social contract.
American Economic Review 90, 96-129.

Bentzel, R. (1970). The social significance of income distribution statistics. Review of
Income and Wealth 16, 253-64.

Benus, J. and J. N. Morgan (1975). Time period, unit of analysis and income concept
in the analysis of income distribution. In J. D. Smith (Ed.), The Personal Distribution
of Income and Wealth. New York: National Bureau of Economic Research.

Bernadelli, H. (1944). The stability of the income distribution. Sankhya 6, 351-62.

Berrebi, Z. M. and ]. Silber (1987). Dispersion, asymmetry and the Gini index of
inequality. International Economic Review 28(6), 331-38.

200



Bibliography

Berry, A., F. Bourguignon, and C. Morrisson (1983a). Changes in the world distribu-
tions of income between 1950 and 1977. The Economic Journal 93, 331-50.

Berry, A., F. Bourguignon, and C. Morrisson (1983b). The level of world inequality:
how much can one say? Review of Income and Wealth 29, 217-43.

Berry, D. A. and B. W. Lindgren (1996). Statistics, Theory and Methods (Second edn.).
Belmont, CA: Duxbury Press.

Bhattacharya, D. (2007). Inference on inequality from household survey data. Journal
of Econometrics 137, 674-707.

Biewen, M. (2002). Bootstrap inference for inequality, mobility and poverty measure-
ment. Journal of Econometrics 108, 317-42.

Biewen, M. and S. P. Jenkins (2006). Variance estimation for generalized entropy
and Atkinson inequality indices: the complex survey data case. Oxford Bulletin of
Economics and Statistics 68, 371-83.

Binder, D. A. and M. S. Kovacevic (1995). Estimating some measures of income
inequality from survey data: an application of the estimating equations approach.
Survey Methodology 21(2) 137-45.

Bishop, J. A., S. Chakraborti, and P. D. Thistle (1989). Asymptotically distribution-
free statistical inference for generalized Lorenz curves. Review of Economics and
Statistics 71(11), 725-27.

Bishop, J. A., S. Chakraborti, and P. D. Thistle (1991). Relative deprivation and
economic welfare: a statistical investigation with Gini-based welfare indices. Scan-
dinavian Journal of Economics 93, 421-37.

Bishop, J. A., J.-R. Chiou, and ]. P. Formby (1994). Truncation bias and the ordinal
evaluation of income inequality. Journal of Business and Economic Statistics 12,
123-27.

Bishop, J. A., J. P. Formby, and W. J. Smith (1991). International comparisons of
income inequality: tests for Lorenz dominance across nine countries. Economica 58,
461-77.

Bishop, J. A., J. P. Formby, and P. D. Thistle (1989). Statistical inference, income
distributions and social welfare. In D. ]J. Slottje (Ed.), Research on Economic Inequality
I. JAI Press.

Bjerke, K. (1970). Income and wage distributions part I: a survey of the literature.
Review of Income and Wealth 16, 235-52.

Blackorby, C. and D. Donaldson (1978). Measures of relative equality and their
meaning in terms of social welfare. Journal of Economic Theory 18, 59-80.

Blackorby, C. and D. Donaldson (1980). A theoretical treatment of indices of absolute
inequality. International Economic Review 21, 107-36.

Blitz, R. C. and ]J. A. Brittain (1964). An extension of the Lorenz diagram to the
correlation of two variables. Metron 23, 37-143.

Boadway, R. W. and N. Bruce (1984). Welfare Economics. Oxford: Basil Blackwell.

Bonferroni, C. (1930). Elemente di Statistica Generale. Firenze: Libreria Seber.

Bordley, R. E, J. B. McDonald, and A. Mantrala (1996). Something new, something
old: parametric models for the size distribution of income. Journal of Income Distri-
bution 6, 91-103.

201



Bibliography

Borooah, V. K., P. P. L. McGregor, and P. M. McKee (1991). Regional Income Inequality
and Poverty in the United Kingdom. Aldershot: Dartmouth Publishing Co.

Bosmans, K. (2007a). Comparing degrees of inequality aversion. Social Choice and
Welfare 29, 405-28.

Bosmans, K. (2007b). Extreme inequality aversion without separability. Economic
Theory 32(3), 589-94.

Bosmans, K. and F. A. Cowell (2010). The class of absolute decomposable inequality
measures. Economics Letters 109, 154-56.

Bosmans, K. and E. Schokkaert (2004). Social welfare, the veil of ignorance and
purely individual risk: an empirical examination. Research on Economic Inequality 11,
85-114.

Bossert, W. (1990). An axiomatization of the single series Ginis. Journal of Economic
Theory 50, 89-92.

Bossert, W. and A. Pfingsten (1990). Intermediate inequality: concepts, indices and
welfare implications. Mathematical Social Science 19, 117-34.

Boulding, K. E. (1975). The pursuit of equality. In J. D. Smith (Ed.), The Personal
Distribution of Income and Wealth. New York: National Bureau of Economic Research.

Bourguignon, F. (1979). Decomposable income inequality measures. Econometrica 47,
901-20.

Bourguignon, E, F. H. G. Ferreira, and P. G. Leite (2008). Beyond Oaxaca-Blinder:
accounting for differences in household income distributions. Journal of Economic
Inequality 6, 117-48.

Bourguignon, F. and C. Morrisson (2002). Inequality among world citizens: 1820-
1992. American Economic Review 92, 727-44.

Bowen, I. (1970). Acceptable Inequalities. London: Allen and Unwin.

Bowman, M. J. (1945). A graphical analysis of personal income distribution in the
United States. American Economic Review 35, 607-28.

Braulke, M. (1983). An approximation to the Gini coefficient for population based on
sparse information for sub-groups. Journal of Development Economics 2(12), 75-81.
Brewer, M., A. Muriel, D. Phillips, and L. Sibieta (2008). Poverty and inequality in the

UK: 2008. IFS Commentary 105, The Institute for Fiscal Studies.

Bronfenbrenner, M. (1971). Income Distribution Theory. London: Macmillan.

Broome, J. (1988). What's the good of equality? In J. Hey (Ed.), Current Issues in
Microeconomics. Basingstoke, Hampshire: Macmillan.

Brown, A. J. (1972). The Framework of Regional Economics in The United Kingdom.
London: Cambridge University Press.

Brown, J. A. C. (1976). The mathematical and statistical theory of income distribution.
In A. B. Atkinson (Ed.), The Personal Distribution of Income. Allen and Unwin,
London.

Bryan, K. A. and L. Martinez (2008). On the evolution of income inequality in the
United States. Economic Quarterly 94, 97-120.

Budd, E. C. (1970). Postwar changes in the size distribution of income in the US.
American Economic Review, Papers and Proceedings 60, 247-60.

Budd, E. C. and D. B. Radner (1975). The Bureau of Economic Analysis and current
population survey size distributions: some comparisons for 1964. In J. D. Smith

202



Bibliography

(Ed.), The Personal Distribution of Income and Wealth. New York: National Bureau of
Economic Research.

Buhmann, B., L. Rainwater, G. Schmaus, and T. Smeeding (1988). Equivalence scales,
well-being, inequality and poverty: sensitivity estimates across ten countries using
the Luxembourg Income Study (LIS) database. Review of Income and Wealth 34,
115-42.

Burkhauser, R. V., J. Butler, S. Feng, and A. J. Houtenville (2004). Long term trends in
earnings inequality: what the CPS can tell us. Economic Letters 82, 295-99.

Burkhauser, R. V., S. Feng, S. P. Jenkins, and J. Larrimore (2008, August). Estimating
trends in US income inequality using the current population survey: the impor-
tance of controlling for censoring. Working Paper 14247, National Bureau of Eco-
nomic Research.

Butler, R. J. and J. B. McDonald (1989). Using incomplete moments to measure
inequality. Journal of Econometrics 42, 109-19.

Campano, F. (1987). A fresh look at Champernowne’s five-parameter formula.
Economie Appliquée 40, 161-75.

Canberra Group (2001). Expert group on household income statistics: final report and
recommendations. Technical report, Ottawa.

Carlsson, E, D. Daruvala, and O. Johansson-Stenman (2005). Are people inequality
averse or just risk averse? Economica 72, 375-96.

Casella, G. and R. L. Berger (2002). Statistical inference. Thomson Press.

Chakravarty, S. R. (1988). Extended Gini indices of inequality. International Economic
Review 29(2), 147-56.

Chakravarty, S. R. (2001). The variance as a subgroup decomposable measure of
inequality. Social Indicators Research 53(1), 79-95.

Chakravarty, S. R. (2007). A deprivation-based axiomatic characterization of
the absolute Bonferroni index of inequality. Journal of Economic Inequality 5,
339-51.

Chakravarty, S. R. and A. B. Chakraborty (1984). On indices of relative deprivation.
Economics Letters 14, 283-87.

Chakravarty, S. R. and S. Tyagarupananda (1998). The subgroup decomposable
absolute indices of inequality. In S. R. Chakravarty, D. Coondoo, and R. Mukherjee
(Eds.), Quantitative Economics: Theory and Practice, Chapter 11, pp. 247-57. New
Delhi: Allied Publishers Limited.

Chakravarty, S. R. and S. Tyagarupananda (2000). The subgroup decomposable
absolute and intermediate indices of inequality. Mimeo, Indian Statistical Institute.

Champernowne, D. G. (1952). The graduation of income distribution. Economet-
rica 20, 591-615.

Champernowne, D. G. (1953). A model of income distribution. The Economic Jour-
nal 63, 318-51.

Champernowne, D. G. (1956). Comment on the paper by P. E. Hart and S. J. Prais.
Journal of The Royal Statistical Society A 119, 181-83.

Champernowne, D. G. (1973). The Distribution of Income Between Persons. Cambridge:
Cambridge University Press.

203



Bibliography

Champernowne, D. G. (1974). A comparison of measures of income distribution. The
Economic Journal 84, 787-816.

Champernowne, D. G. and F. A. Cowell (1998). Economic Inequality and Income Distri-
bution. Cambridge: Cambridge University Press.

Chesher, A. and C. Schluter (2002). Measurement error and inequality measurement.
Review of Economic Studies 69, 357-78.

Chew, S.-H. (1983). A generalization of the quasi-linear mean with application to the
measurement of income inequality. Econometrica 51, 1065-92.

Ching, P. (1991). Size distribution of income in the Phillipines. In T. Mizoguchi
(Ed.), Making Economies More Efficient and More Equitable: Factors Determining Income
Distribution. Tokyo: Kinokuniya.

Chipman, J. S. (1974). The welfare ranking of Pareto distributions. Journal of Economic
Theory 9, 275-82.

Chotikapanich, D. and W. Griffiths (2005). Averaging Lorenz curves. Journal of Eco-
nomic Inequality 3, 1-19.

Chotikapanich, D., D. S. Prasada Rao, and K. K. Tang (2007). Estimating income
inequality in China using grouped data and the generalized beta distribution.
Review of Income and Wealth 53, 127-47.

Clementi, F. and M. Gallegati (2005). Pareto’s law of income distribution: evidence
for Germany, the United Kingdom, and the United States. In A. Chatterjee, S. Yarla-
gadda, and B. K. Chakrabarti (Eds.), Econophysics of Wealth Distributions. Berlin:
Springer.

Cortese, C. E, R. E Falk, and J. K. Cohen (1976). Further consideration on the method-
ological analysis of segregation indices. American Sociological Review 41, 630-37.

Coulter, F. A. E., E. A. Cowell, and S. P. Jenkins (1992a). Differences in needs and
assessement of income distributions. Bulletin of Economic Research 44, 77-124.

Coulter, E. A. E., E A. Cowell, and S. P. Jenkins (1992b). Equivalence scale relativities
and the extent of inequality and poverty. The Economic Journal 102, 1067-82.

Cowell, E. A. (1975). Income tax incidence in an ageing population. European Economic
Review 6, 343-67.

Cowell, E. A. (1977). Measuring Inequality (First edn.). Oxford: Phillip Allan.

Cowell, F. A. (1980). On the structure of additive inequality measures. Review of
Economic Studies 47, 521-31.

Cowell, E A. (1984). The structure of American income inequality. Review of Income
and Wealth 30, 351-75.

Cowell, F. A. (1985a). ‘A fair suck of the sauce bottle’—or what do you mean by
inequality? Economic Record 6, 567-79.

Cowell, E. A. (1985b). Multilevel decomposition of Theil’s index of inequality. Review
of Income and Wealth 31, 201-05.

Cowell, F. A. (1988a). Inequality decomposition—three bad measures. Bulletin of
Economic Research 40, 309-12.

Cowell, E. A. (1988b). Poverty measures, inequality and decomposability. In D. Bos,
M. Rose, and C. Seidl (Eds.), Welfare and Efficiency in Public Economics, pp. 149-66.
Berlin, Heidelberg: Springer-Verlag.

204



Bibliography

Cowell, F. A. (1989). Sampling variance and decomposable inequality measures. Jour-
nal of Econometrics 42, 27-41.

Cowell, F. A. (1991). Grouping bounds for inequality measures under alternative
informational assumptions. Journal of Econometrics 48, 1-14.

Cowell, E A. (1999). Estimation of inequality indices. In J. Silber (Ed.), Handbook on
Income Inequality Measurement. Dewenter: Kluwer.

Cowell, E A. (2000). Measurement of inequality. In A. B. Atkinson and F. Bourguignon
(Eds.), Handbook of Income Distribution, Chapter 2, pp. 87-166. Amsterdam: North
Holland.

Cowell, E. A. (2006). Theil, inequality indices and decomposition. Reseach on Economic
Inequality 13, 345-60.

Cowell, F. A. (2008a). Gini, deprivation and complaints. In G. Betti and A. Lemmi
(Eds.), Advances on Income Inequality and Concentration Measures. London: Routledge.

Cowell, F. A. (2008b). Income distribution and inequality. In J. B. Davis and W. Dolf-
sma (Eds.), The Elgar Companion To Social Economics, Chapter 13. Cheltenham:
Edward Elgar.

Cowell, F. A. (2008c). Inequality: Measurement. In S. N. Durlauf and L. E. Blume
(Eds.), The New Palgrave Dictionary of Economics (2nd edn.). Basingstoke: Palgrave
Macmillan.

Cowell, F. A. and U. Ebert (2004). Complaints and inequality. Social Choice and
Welfare 23, 71-89.

Cowell, F. A. and C. Fiorio (2009). Inequality decompositions—a reconciliation. Dis-
tributional Analysis Discussion Paper 99, STICERD, London School of Economics,
London WC2A 2AE.

Cowell, F. A. and E. Flachaire (2007). Income distribution and inequality measure-
ment: the problem of extreme values. Journal of Econometrics 141, 1044-72.

Cowell, FE. A. and K. A. Gardiner (2000). Welfare weights. OFT Economic Research
Paper 202, Office of Fair Trading, Salisbury Square, London.

Cowell, F. A. and S. P. Jenkins (1995). How much inequality can we explain? A
methodology and an application to the USA. The Economic Journal 105, 421-30.
Cowell, F. A. and S. P. Jenkins (2003). Estimating welfare indices: household sample

design. Research on Economic Inequality 9, 147-72.

Cowell, F. A. and K. Kuga (1981). Inequality measurement: an axiomatic approach.
European Economic Review 15, 287-305.

Cowell, F. A. and F. Mehta (1982). The estimation and interpolation of inequality
measures. Review of Economic Studies 49, 273-90.

Cowell, F. A. and E. Schokkaert (2001). Risk perceptions and distributional judgments.
European Economic Review 42, 941-52.

Cowell, F. A. and M.-P. Victoria-Feser (1996). Robustness properties of inequality
measures. Econometrica 64, 77-101.

Cowell, E. A. and M.-P. Victoria-Feser (2002). Welfare rankings in the presence of
contaminated data. Econometrica 70, 1221-33.

Cowell, F. A. and M.-P. Victoria-Feser (2003). Distribution-free inference for welfare
indices under complete and incomplete information. Journal of Economic Inequal-
ity 1, 191-219.

205



Bibliography

Cowell, E. A. and M.-P. Victoria-Feser (2006). Distributional dominance with trimmed
data. Journal of Business and Economics Statistics 24, 291-300.

Cowell, F. A. and M.-P. Victoria-Feser (2007). Robust stochastic dominance: a semi-
parametric approach. Journal of Economic Inequality §, 21-37.

Cowell, E A. and M.-P. Victoria-Feser (2008). Modelling Lorenz curves: robust and
semi-parametric issues. In D. Chotikapanich (Ed.), Modeling Income Distributions and
Lorenz Curves, Chapter 13, pp. 241-55. New York: Springer.

Cramer, J. S. (1978). A function for the size distribution of income: comment. Econo-
metrica 46, 459-60.

Crawford, I. and Z. Smith (2002). Distributional aspects of inflation. Commentary 90,
Institute for Fiscal Studies.

Creedy, J. (1977). The principle of transfers and the variance of logarithms. Oxford
Bulletin of Economics and Statistics 39, 153-58.

Crew, E. L. (1982). Double cumulative and Lorenz curves in weather modification.
Journal of Applied Meteorology 21, 1063-70.

Cronin, D. C. (1979). A function for the size distribution of income: a further com-
ment. Econometrica 47, 773-74.

Dagum, C. (1977). A new model of personal income distribution: specification and
estimation. Economie Appliquée 30, 413-36.

Dagum, C. (1990). On the relationship between income inequality measures and
social welfare functions. Journal of Econometrics 43, 91-102.

Dahlby, B. G. (1987). Interpreting inequality measures in a Harsanyi framework.
Theory and Decision 22, 187-202.

Dalton, H. (1920). Measurement of the inequality of incomes. The Economic Jour-
nal 30, 348-61.

Damjanovic, T. (2005). Lorenz dominance for transformed income distributions: a
simple proof. Mathematical Social Sciences 50, 234-37.

Dardanoni, V. and P. J. Lambert (1988). Welfare rankings of income distributions: a
role for the variance and some insights for tax reform. Social Choice and Welfare 5(5),
1-17.

Das, T. and A. Parikh (1981). Decompositions of Atkinson’s measures of inequality.
Australian Economic Papers 6, 171-78.

Das, T. and A. Parikh (1982). Decomposition of inequality measures and a compara-
tive analysis. Empirical Economics 7, 23-48.

Dasgupta, P. S., A. K. Sen, and D. A. Starrett (1973). Notes on the measurement of
inequality. Journal of Economic Theory 6, 180-87.

David, H. A. (1968). Gini’s mean difference rediscovered. Biometrika 55, 573-75.

David, H. A. (1981). Order Statistics (2nd edn.). New York: John Wiley.

Davidson, R. (2009). Reliable inference for the Gini index. Journal of Economet-
rics 150(1), 30-40.

Davidson, R. and J.-Y. Duclos (2000). Statistical inference for stochastic dominance
and for the measurement of poverty and inequality. Econometrica 68, 1435-64.

Davidson, R. and E. Flachaire (2007). Asymptotic and bootstrap inference for inequal-
ity and poverty measures. Journal of Econometrics 141, 141-66.

206



Bibliography

Davies, J. B. and M. Hoy (1995). Making inequality comparisons when Lorenz curves
intersect. American Economic Review 85, 980-86.

Davies, J. B. and A. F. Shorrocks (1989). Optimal grouping of income and wealth data.
Journal of Econometrics 42, 97-108.

Davis, H. T. (1941). The Analysis of Economic Time Series. Bloomington, Indiana:
Principia Press.

Davis, H. T. (1954). Political Statistics. Evanston, Illinois: Principia Press.

Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods. Cambridge: Cambridge
University Press.

Deaton, A. S. (1997). The Analysis of Household Surveys. Baltimore, Maryland: Johns
Hopkins Press for the World Bank.

Deininger, K. and L. Squire (1997). A new data set measuring income inequality. World
Bank Economic Review 10, 565-91.

Deltas, G. (2003). The small-sample bias of the Gini coefficient: results and implica-
tions for empirical research. The Review of Economics and Statistics 85, 226-34.

DeNavas-Walt, C., B. D. Proctor, and J. C. Smith (2008). Income, poverty, and health
insurance coverage in the United States: 2007. Current Population Reports P60-235,
U.S. Census Bureau, U.S. Government Printing Office, Washington, DC.

Department of Work and Pensions (2008). Households Below Average Income: An Analy-
sis of the Income Distribution 1994/95-2006/07. London: Department for Work and
Pensions.

Department of Work and Pensions (2009). Households Below Average Income: An Analy-
sis of the Income Distribution 1994/95-2007/08. London: Department for Work and
Pensions.

Devooght, K. (2003). Measuring inequality by counting ‘complaints’: theory and
empirics. Economics and Philosophy 19, 241-63.

Diez, H., M. C. Lasso de la Vega, A. de Sarachu, and A. M. Urrutia (2007). A consistent
multidimensional generalization of the Pigou-Dalton transfer principle: an analysis.
The B.E. Journal of Theoretical Economics 7, Article 45.

Donaldson, D. and J. A. Weymark (1980). A single parameter generalization of the
Gini indices of inequality. Journal of Economic Theory 22, 67-68.

Dorfman, P. (1979). A formula for the Gini coefficient. Review of Economics and
Statistics 61, 146-49.

Duclos, J. and A. Araar (2006). Poverty and Equity: Measurement, Policy, and Estimation
with DAD. New York: Springer.

Duncan, O. D. and B. Duncan (1955). A methodological analysis of segregation
indices. American Sociological Review 20, 210-17.

Dutta, B. and J. Esteban (1992). Social welfare and equality. Social Choice and Welfare 9,
267-76.

Ebert, U. (1987). Size and distribution of incomes as determinants of social welfare.
Journal of Economic Theory 41, 25-33.

Ebert, U. (1988). A family of aggregative compromise inequality measure. International
Economic Review 29(5), 363-76.

Ebert, U. (1995). Income inequality and differences in household size. Mathematical
Social Sciences 30, 37-55.

207



Bibliography

Ebert, U. (1999). Dual decomposable inequality measures. Canadian Journal of
Economics-Revue Canadienne D’Economique 32(1), 234-46.

Ebert, U. (2004). Social welfare, inequality, and poverty when needs differ. Social
Choice and Welfare 23, 415-44.

Ebert, U. (2007). Ethical inequality measures and the redistribution of income when
needs differ. Journal of Economic Inequality §, 263-78.

Ebert, U. (2009). Taking empirical studies seriously: the principle of concentration and
the measurement of welfare and inequality. Social Choice and Welfare 32, 555-74.
Ebert, U. and H. Welsch (2009). How do Europeans evaluate income distributions? An

assessment based on happiness surveys. Review of Income Wealth 55(3), 803-19.

Eichhorn, W., H. Funke, and W. E Richter (1984). Tax progression and inequality of
income distribution. Journal of Mathematical Economics 13(10), 127-31.

Eichhorn, W. and W. Gehrig (1982). Measurement of inequality in economics. In
B. Korte (Ed.), Modern Applied Mathematics—Optimization and Operations Research,
pp- 657-93. Amsterdam: North Holland.

Elbers, C., P. Lanjouw, J. A. Mistiaen, and B. Ozler (2008). Reinterpreting between-
group inequality. Journal of Economic Inequality 6, 231-45.

Elliott, S. (2009). Why measure inequality? A discussion of the concept of equality.
Oxonomics 4(1), 32-41.

Eltetd, O. and E. Frigyes (1968). New income inequality measures as efficient tools for
causal analysis and planning. Econometrica 36, 383-96.

Esberger, S. E. and S. Malmquist (1972). En Statisk Studie av Inkomstutveklingen. Stock-
holm: Statisk Centralbyran och Bostadssyrelsen.

Esteban, J. (1986). Income share elasticity and the size distribution of income. Inter-
national Economic Review 27, 439-44.

Evans, M., N. Hastings, and B. Peacock (1993). Statistical Distributions. New York: John
Wiley.

Fase, M. M. G. (1970). An Econometric Model of Age Income Profiles, A Statistical Analysis
of Dutch Income Data. Rotterdam: Rotterdam University Press.

Feldstein, M. (1998, October). Income inequality and poverty. Working Paper 6770,
NBER, 1050 Massachusetts Avenue Cambridge, Massachusetts 02138-5398, USA.
Fellman, J. (1976). The effect of transformation on Lorenz curves. Econometrica 44,

823-24.

Fellman, J. (2001). Mathematical properties of classes of income redistributive poli-
cies. European Journal of Political Economy 17, 179-92.

Ferber, R., J. Forsythe, H. W. Guthrie, and E. S. Maynes (1969). Validation of a national
survey of consumer financial characteristics. Review of Economics and Statistics 51,
436-44.

Ferreira, F. H. G. and M. Ravallion (2009). Global poverty and inequality: a review of
the evidence. In B. Nolan, F. Salverda, and T. Smeeding (Eds.), Oxford Handbook on
Economic Inequality. Oxford, UK: Oxford University Press.

Fichtenbaum, R. and H. Shahidi (1988). Truncation bias and the measurement of
income inequality. Journal of Business and Economic Statistics 6, 335-37.

Fields, G. S. (2003). Accounting for income inequality and its change: a new method
with application to distribution of earnings in the United States. Research in Labor
Economics 22, 1-38.

208



Bibliography

Fields, G. S. (2007). How much should we care about changing income inequality in
the course of economic growth? Journal of Policy Modelling 29, 577-85.

Fisk, P. R. (1961). The graduation of income distribution. Econometrica 29, 171-85.

Fleurbaey, M. and G. Gaulier (2009). International comparisons of living standards by
equivalent incomes. Scandinavian Journal of Economics 111(3), 597-624.

Foster, J. E. (1983). An axiomatic characterization of the Theil measure of income
inequality. Journal of Economic Theory 31, 105-21.

Foster, J. E. (1984). On economic poverty: a survey of aggregate measures. Advances in
Econometrics 3, 215-51.

Foster, J. E. (1985). Inequality measurement. In H. P. Young (Ed.), Fair Allocation,
pp- 38-61. Providence, R. I.: American Mathematical Society.

Foster, J. E. and E. A. Ok (1999). Lorenz dominance and the variance of logarithms.
Econometrica 67, 901-07.

Foster, J. E. and A. A. Shneyerov (1999). A general class of additively decomposable
inequality measures. Economic Theory 14, 89-111.

Francis, W. L. (1972). Formal Models of American Politics: An Introduction. New York:
Harper and Row.

Freund, J. E. (2003). Mathematical Statistics with Applications (Seventh edn.). Harlow,
Essex: Pearson Education.

Freund, ]J. E. and B. M. Perles (2007). Modern Elementary Statistics (Twelfth edn.). Upper
Saddle River, New Jersey: Pearson Prentice Hall.

Frosini, B. V. (1985). Comparing inequality measures. Statistica 45, 299-317.

Frosini, B. V. (1989). Aggregate units, within group inequality and decomposition of
inequality measures. Statistica 49, 349-69.

Frosztega, M. (2000). Comparisons of income data between the Family Expenditure
Survey and the Family Resources Survey. Government Statistical Service Methodol-
ogy Series 18, Analytical Services Division, Department of Social Security.

Gabaix, X. (2008). Power laws in economics and finance. Working Paper 14299,
National Bureau of Economic Research.

Gaertner, W. (2006). A Primer in Social Choice Theory. Oxford: Oxford University Press.

Gail, M. H. and J. L. Gastwirth (1978a). A scale-free goodness-of-fit test for expo-
nential distribution based on the Lorenz curve. Journal of the American Statistical
Association 73, 787-93.

Gail, M. H. and J. L. Gastwirth (1978b). A scale-free goodness of fit test for the
exponential distribution based on the Gini statistic. Journal of the Royal Statistical
Society, Series B 40, 350-57.

Gastwirth, J. L. (1971). A general definition of the Lorenz curve. Econometrica 39,
1037-39.

Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. Review of
Economics and Statistics 54, 306-16.

Gastwirth, J. L. (1974a). Large-sample theory of some measures of inequality. Econo-
metrica 42, 191-96.

Gastwirth, J. L. (1974b). A new index of income inequality. International Statistical
Institute Bulletin 45(1), 437-41.

209



Bibliography

Gastwirth, J. L. (1975). The estimation of a family of measures of economic inequality.
Journal of Econometrics 3, 61-70.

Gastwirth, J. L. and M. Glauberman (1976). The interpolation of the Lorenz curve and
Gini index from grouped data. Econometrica 44, 479-83.

Gastwirth, J. L., T. K. Nayak, and A. N. Krieger (1986). Large sample theory for the
bounds on the Gini and related indices from grouped data. Journal of Business and
Economic Statistics 4, 269-73.

Gastwirth, J. L. and J. T. Smith (1972). A new goodness-of-fit test. Proceedings of The
American Statistical Association, 320-22.

Gehrig, W. (1988). On the Shannon-Theil concentration measure and its characteri-
zations. In W. Eichhorn (Ed.), Measurement in Economics. Heidelberg: Physica Verlag.

Giles, D. E. A. (2004). A convenient method of computing the Gini index and its
standard error. Oxford Bulletin of Economics and Statistics 66, 425-33.

Gini, C. (1912). Variabilita e mutabilita. Studi Economico-Giuridici dell’Universita di
Cagliari 3, 1-158.

Glasser, G. J. (1962). Variance formulas for the mean difference and the coefficient of
concentration. Journal of the American Statistical Association 57, 648-54.

Glewwe, P. (1986). The distribution of income in Sri Lanka in 1969-70 and 1980-81.
Journal of Development Economics 24, 255-74.

Glewwe, P. (1991). Household equivalence scales and the measurement of inequality:
transfers from the poor to the rich could decrease inequality. Journal of Public
Economics 44, 211-16.

Goodman, A. and Z. Oldfield (2004). Permanent differences? Income and expenditure
inequality in the 1990s and 2000s. IFS Report 66, The Institute for Fiscal Studies.
Gottschalk, P. and T. M. Smeeding (1997). Cross-national comparisons of earnings

and income inequality. Journal of Economic Literature 35, 633-87.

Graaff, J. (1957). Theoretical Welfare Economics. London: Cambridge University Press.

Grosfeld, I. and C. Senik (2010). The emerging aversion to inequality: evidence from
subjective data. Economics of Transition 18(1), 1-26.

Gupta, M. R. (1984). Functional forms for estimating the Lorenz curve. Economet-
rica 52, 1313-14.

Hagenaars, A. J. M. (1986). The Perception of Poverty. Amsterdam: North-Holland.

Hagerbaumer, J. B. (1977). The Gini concentration ratio and the minor concentration
ratio: a two-parameter index of inequality. Review of Economics and Statistics 59,
377-79.

Hainsworth, G. B. (1964). The Lorenz curve as a general tool of economic analysis.
Economic Record 40, 426-41.

Hammond, P. J. (1975). A note on extreme inequality aversion. Journal of Economic
Theory 11, 465-67.

Hanna, F. A., J. A. Pechman, and S. M. Lerner (1948). Analysis of Wisconsin Income.
New York: National Bureau of Economic Research.

Hannah, L. and J. A. Kay (1977). Concentration in British Industry: Theory, Measurement
and the UK Experience. London: MacMillan.

Hardy, G., J. Littlewood, and G. Pdélya (1934). Inequalities. London: Cambridge Uni-
versity Press.

210



Bibliography

Hardy, G., J. Littlewood, and G. Pdlya (1952). Inequalities (Second edn.). London:
Cambridge University Press.

Harrison, A. J. (1974). Inequality of income and the Champernowne distribution.
Discussion paper 54, University of Essex, Department of Economics.

Harrison, A.J. (1979). The upper tail of the earnings distribution: Pareto or lognormal?
Economics Letters 2, 191-95.

Harrison, A. J. (1981). Earnings by size: a tale of two distributions. Review of Economic
Studies 48, 621-31.

Harsanyi, J. C. (1953). Cardinal utility in welfare economics and in the theory of
risk-taking. Journal of Political Economy 61, 434-35.

Harsanyi, J. C. (1955). Cardinal welfare, individualistic ethics and interpersonal com-
parisons of utility. Journal of Political Economy 63, 309-21.

Hart, P. E. and S. J. Prais (1956). An analysis of business concentration. Journal of The
Royal Statistical Society A 119, 150-81.

Harvey, A. and J. Bernstein (2003). Measurement and testing of inequality from time
series of deciles with an application to U.S. wages. The Review of Economics and
Statistics 85, 141-52.

Hasegawa, H. and H. Kozumi (2003). Estimation of Lorenz curves: a Bayesian non-
parametric approach. Journal of Econometrics 115, 277-91.

Hayakawa, M. (1951). The application of Pareto’s law of income to Japanese data.
Econometrica 19, 174-83.

Helmert, F. R. (1876). Die Berechnung des wahrscheinlichen Beobachtungsfehlers
aus den ersten Potenzen der Differenzen gleichgenauer direkter Beobachtungen.
Astronomische Nachrichten 88, 127-32.

Hempenius, A. L. (1984). Relative income position, individual and social income
satisfaction, and income inequality. De Economist 32, 468-78.

Herfindahl, O. C. (1950). Concentration in the Steel Industry. Ph. D. thesis, Columbia
University.

Heston, A. W., R. Summers, and B. Aten (2001). Price structures, the quality factor,
and chaining. Statistical Journal of the United Nations ECE 18, 77-101.

Hill, M. S. (1992). The Panel Study of Income Dynamics: A User’s Guide. Newbury Park,
CA: Sage Publications.

Hill, T. P. (1959). An analysis of the distribution of wages and salaries in Great Britain.
Econometrica 27, 355-81.

Hills, J. R. (2004). Inequality and the State. Oxford: Oxford University Press.

HM Treasury (2003). The Green Book: Appraisal and Evaluation in Central Government
(and Technical Annex). London: (Third edn.). TSO.

Hobijn, B. and D. Lagakos (2005). Inflation inequality in the United States. Review of
Income and Wealth 51, 581-606.

Hochman, H. and J. D. Rodgers (1969). Pareto-optimal redistribution. American Eco-
nomic Review 59, 542-57.

Horrace, W., J. Marchand, and T. Smeeding (2008). Ranking inequality: applications
of multivariate subset selection. Journal of Economic Inequality 6, 5-32.

Howes, S. P. and P. Lanjouw (1994). Regional variations in urban living standards in
urban China. In Q. Fan and P. Nolan (Eds.), China’s Economic Reforms: The Costs and
Benefits of Incrementalism. Basingstoke: Macmillan.

211



Bibliography

Hu, B. (1995). A note on calculating the Gini index. Mathematics and Computers in
Simulation 39, 353-58.

Hussain, A., P. Lanjouw, and N. H. Stern (1994). Income inequalities in China:
evidence from household survey data. World Development 22, 1947-57.

Iritani, J. and K. Kuga (1983). Duality between the Lorenz curves and the income
distribution functions. Economic Studies Quarterly 34(4), 9-21.

Jakobsson, U. (1976). On the measurement of the degree of progression. Journal of
Public Economics 5, 161-68.

Jasso, G. (1979). On Gini’s mean difference and Gini’s index of concentration. Ameri-
can Sociological Review 44, 867-70.

Jasso, G. (1980). A new theory of distributive justice. American Sociological Review 48,
3-32.

Jasso, G. and S. Kotz (2007). A new continuous distribution and two new families of
distributions based on the exponential. Statistica Neerlandica 61(3), 305-28.

Jencks, C. (1973). Inequality. London: Allen Lane.

Jenkins, S. P. (1991). The measurement of economic inequality. In L. Osberg (Ed.),
Readings on Economic Inequality. Armonk, NY: M.E. Sharpe.

Jenkins, S. P. (1995). Accounting for inequality trends: decomposition analyses for the
UK. Economica 62, 29-64.

Jenkins, S. P. (2009). Distributionally-sensitive inequality indices and the GB2 income
distribution. Review of Income and Wealth 55, 392-98.

Jenkins, S. P. and E. A. Cowell (1994a). Dwarfs and giants in the 1980s: the UK income
distribution and how it changed. Fiscal Studies 15(1), 99-118.

Jenkins, S. P. and F. A. Cowell (1994b). Parametric equivalence scales and scale
relativities. The Economic Journal 104, 891-900.

Jenkins, S. P. and M. O’Higgins (1989). Inequality measurement using norm
incomes—were Garvy and Paglin onto something after all? Review of Income and
Wealth 35, 245-82.

Jenkins, S. P. and P. Van Kerm (2005). Accounting for income distribution trends: a
density function decomposition approach. Journal of Economic Inequality 3, 43-61.

Jenkins, S. P. and P. Van Kerm (2008). The measurement of economic inequality. In
W. Salverda, N. Nolan, and T. M. Smeeding (Eds.), Oxford Handbook on Economic
Inequality, Chapter 3. Oxford: Oxford University Press.

Johnson, N. O. (1937). The Pareto law. Review of Economic Statistics 19, 20-26.

Jones, F. (2008). The effects of taxes and benefits on household income, 2006/07.
Economic and Labour Market Review 2, 37-47.

Jorgenson, D. W. and D. T. Slesnick (1990). Inequality and the standard of living.
Journal of Econometrics 43, 103-20.

Kakamu, K. and M. Fukushige (2009). Multilevel decomposition methods for income
inequality measures. Japanese Economic Review 60(3), 333-44.

Kakwani, N. C. and N. Podder (1973). On the estimation of the Lorenz curve from
grouped observations. International Economic Review 14, 278-92.

Kampelmann, S. (2009). Inequality measures as conventions: new interpretations of
a classic operationalization problem. Socio-Economic Review 7, 669-94.

212



Bibliography

Kanbur, S. M. N. (2006). The policy significance of decompositions. Journal of Economic
Inequality 4, 367-74.

Kanbur, S. M. N. and Z. Zhang (1999). Which regional inequality? The evolution of
rural-urban and inland—coastal inequality in China from 1983 to 1995. Journal of
Comparative Economics 27, 686-701.

Kanbur, S. M. N. and Z. Zhang (2005). Fifty years of regional inequality in China:
a journey through central planning, reform, and openness. Review of Development
Economics 8, 87-106.

Kaplow, L. (2005). Why measure inequality? Journal of Economic Inequality 3, 65-79.

Kendall, M. G., A. Stuart, and ]J. K. Ord (1994). Kendall’s Advanced Theory of Statistics
(Sixth edn.), Volume 1, Distribution theory. London: Edward Arnold.

Kendall, M. G., A. Stuart, J. K. Ord, and S. Arnold (1999). Kendall’s Advanced Theory of
Statistics (Sixth edn.), Volume 2A, Classical inference and the linear model. London:
Edward Arnold.

Klass, O. S., O. Biham, M. Levy, O. Malcai, and S. Solomon (2006). The Forbes 400
and the Pareto wealth distribution. Economics Letters 90, 290-95.

Kleiber, C. and S. Kotz (2002). A characterization of income distributions in terms of
generalized Gini coefficients. Social Choice and Welfare 19, 789-94.

Kleiber, C. and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial
Sciences. Hoboken. NJ: John Wiley.

Kloek, T. and H. K. Van Dijk (1978). Efficient estimation of income distribution
parameters. Journal of Econometrics 8, 61-74.

Klonner, S. (2000). The first-order stochastic dominance ordering of the Singh-
Maddala distribution. Economics Letters 69(2), 123-128.

Kmietowicz, Z. W. (1984). The bivariate lognormal model for the distribution of
household size and income. The Manchester School of Economic and Social Studies 52,
196-210.

Kmietowicz, Z. W. and H. Ding (1993). Statistical analysis of income distribution in
the Jiangsu province ofChina. The Statistician 42, 107-21.

Kmietowicz, Z. W. and P. Webley (1975). Statistical analysis of income distribution in
the central province of Kenya. Eastern Africa Economic Review 17, 1-25.

Kolm, S.-C. (1969). The optimal production of social justice. In J. Margolis and
H. Guitton (Eds.), Public Economics, pp. 145-200. London: Macmillan.

Kolm, S.-C. (1976a). Unequal inequalities I. Journal of Economic Theory 12, 416-42.

Kolm, S.-C. (1976b). Unequal inequalities II. Journal of Economic Theory 13, 82-111.

Kondor, Y. (1971). An old-new measure of income inequality. Econometrica 39,
1041-42.

Kondor, Y. (1975). Value judgement implied by the use of various measures of income
inequality. Review of Income and Wealth 21, 309-21.

Koo, A. Y. C., N. T. Quan, and R. Rasche (1981). Identification of the Lorenz curve by
Lorenz coefficients. Weltwirtschaftliches Archiv 117, 125-35.

Kopczuk, W. and E. Saez (2004). Top wealth shares in the United States, 1916-2000:
evidence from estate tax returns. National Tax Journal 57, 445-87.

Korinek, A., J. A. Mistiaen, and M. Ravallion (2006). Survey nonresponse and the
distribution of income. Journal of Economic Inequality 4, 33-55.

213



Bibliography

Kovacevic, M. S. and D. A. Binder (1997). Variance estimation for measures of income
inequality and polarization. Journal of Official Statistics 13, 41-58.

Kravis, I. B., A. W. Heston, and R. Summers (1978a). International Comparisons of Real
Product and Purchasing Power. Baltimore: John Hopkins University Press.

Kravis, 1. B., A. W. Heston, and R. Summers (1978b). Real GDP per capita for more
than one hundred countries. The Economic Journal 88, 215-42.

Krishnan, P. (1981). Measures of inequality for qualitative variables and concentration
curves. American Sociological Review 46, 368-71. Comment on Allison, American
Sociological Review December 1978.

Kroll, Y. and L. Davidovitz (2003). Inequality aversion versus risk aversion. Econom-
ica 70, 19-29.

Kuga, K. (1973). Measures of income inequality: an axiomatic approach. Discussion
Paper 76, Institute of Social and Economic Research, Osaka University.

Kuga, K. (1980). The Gini index and the generalised entropy class: further results and
a vindication. Economic Studies Quarterly 31, 217-28.

Kuznets, S. (1959). Six Lectures on Economic Growth. Illinois: Free Press of Glencoe.

Kuznets, S. (1963). Quantitative aspects of the economic growth of nations: part VIII,
distribution of income by size. Economic Development and Cultural Change 11, 1-80.

Kuznets, S. (1966). Modern Economic Growth. New Haven, Connecticut: Yale University
Press.

Lam, D. (1986). The dynamics of population growth, differential fertility and inequal-
ity. American Economic Review 76, 1103-16.

Lambert, P. J. (1980). Inequality and social choice. Theory and Decision 12, 395-98.

Lambert, P. ]J. (2001). The Distribution and Redistribution of Income (Third edn.).
Manchester: Manchester University Press.

Lambert, P. J. and J. R. Aronson (1993). Inequality decomposition analysis and the
Gini coefficient revisited. The Economic Journal 103(9), 1221-27.

Lambert, P. J. and G. Lanza (2006). The effect on inequality of changing one or two
incomes. Journal of Economic Inequality 4, 253-77.

Lambert, P. J., D. L. Millimet, and D. J. Slottje (2003). Inequality aversion and the
natural rate of subjective inequality. Journal of Public Economics 87, 1061-90.

Layard, A. (1994). Cost Benefit Analysis (Second edn.). Cambridge: Cambridge Univer-
sity Press.

Layard, R., S. Nickell, and G. Mayraz (2008, August). The marginal utility of income.
Journal of Public Economics 92(8-9), 1846-57.

Lebergott, S. (1959). The shape of the income distribution. American Economic
Review 49, 328-47.

Lefranc, A., N. Pistolesi, and A. Trannoy (2008). Inequality and opportunities
vs. inequality of outcome: are western societies all alike? Review of Income and
Wealth 54, 513-46.

Lerman, R. I. and S. Yitzhaki (1984). A note on the calculation and interpretation of
the Gini index. Economics Letters 15, 363-68.

Lerman, R. I. and S. Yitzhaki (1989). Improving the accuracy of estimates of the Gini
coefficient. Journal of Econometrics 42, 43-47.

214



Bibliography

Levine, D. and N. M. Singer (1970). The mathematical relation between the income
density function and the measurement of income inequality. Econometrica 38,
324-30.

Likes, J. (1969). Minimum variance unbiased estimates of the parameters of power
function and Pareto’s distribution. Statistische Hefte 10, 104-10.

Lin, T. (1990). Relation between the Gini coefficient and the Kuznets ratio of MEP.
Jahrbuch von Nationalokonomie und Statistik 207(2), 36-46.

Lin, T., J. Zhuang, D. Yarcia, and F. Lin (2008). Income inequality in the People’s
Republic of China and its decomposition: 1990-2004. Asian Development Review 25,
119-36.

Lindley, D. V. and J. C. P. Miller (1966). Cambridge Elementary Statistical Tables.
London: Cambridge University Press.

Little, . M. D. and J. A. Mirrlees (1974). Project Appraisal and Planning in Developing
Countries. London: Heinemann.

Lomnicki, Z. A. (1952). The standard error of Gini’s mean difference. Annals of
Mathematical Statistics 23, 635-37.

Lorenz, M. O. (1905). Methods for measuring concentration of wealth. Journal of the
American Statistical Association 9, 209-19.

Love, R. and M. C. Wolfson (1976). Income inequality: statistical methodology and
Canadian illustrations. Occasional Paper 13-559, Statistics Canada.

Lydall, H. F. (1959). The long-term trend in the size distribution of income. Journal of
the Royal Statistical Society A 122, 1-36.

Lydall, H. F. (1968). The Structure of Earnings. Oxford: Clarendon Press.

Maasoumi, E. (1986). The measurement and decomposition of multi-dimensional
inequality. Econometrica 54, 991-97.

Maasoumi, E. (1989). Continuously distributed attributes and measures of multivari-
ate inequality. Journal of Econometrics 42, 131-44.

Maccabelli, T. (2009). Measuring inequality: Pareto’s ambiguous contribution. History
of Political Economy 41, 183-208.

Maddala, G. S. and S. K. Singh (1977). Estimation problems in size distribution of
incomes. Economie Appliquée 30, 461-80.

Majumder, A. and S. R. Chakravarty (1990). Distribution of personal income: devel-
opment of a new model and its application to U.S. income data. Journal of Applied
Econometrics 5, 189-96.

Malik, H. J. (1970). Estimation of the parameters of the Pareto distribution. Metrika 185,
126-32.

Mandelbrot, B. (1960). The Pareto-Lévy law and the distribution of income. Interna-
tional Economic Review 1(2), 79-106.

Marfels, C. (1971). Einige neuere Entwicklungen in der Messung der industriellen
Konzentration (some new developments in the measurement of industrial concen-
tration). Metrika 17, 753-66.

Marshall, A. W. and 1. Olkin (1979). Inequalities: Theory and Majorization. New York:
Academic Press.

McClements, L. (1977). Equivalence scales for children. Journal of Public Economics 8,
191-210.

215



Bibliography

McDonald, J. B. (1984). Some generalized functions for the size distribution of
income. Econometrica 52, 647-64.

McDonald, J. B. and B. Jensen (1979). An analysis of some properties of alternative
measures of income inequality based on the gamma distribution function. Journal
of the American Statistical Association 74, 856—60.

McDonald, J. B. and A. Mantrala (1995). The distribution of personal income revisited.
Journal of Applied Econometrics 10, 201-04.

McDonald, J. B. and M. R. Ransom (1979). Functional forms, estimation techniques
and the distribution of income. Econometrica 47, 1513-25.

McDonald, J. B. and M. R. Ransom (1981). An analysis of the bounds for the Gini
coefficient. Journal of Econometrics 17, 177-218.

Meade, J. E. (1976). The Just Economy. London: Allen and Unwin.

Mehran, E. (1975). Bounds on the Gini index based on observed points of the Lorenz
curve. Journal of the American Statistical Association 70, 64-66.

Mera, K. (1969). Experimental determination of relative marginal utilities. Quarterly
Journal of Economics 83, 464-77.

Metcalf, C. E. (1969). The size distribution of income during the business cycle.
American Economic Review 59, 657-68.

Milanovic, B. (2007). Why we all care about inequality (but some of us are loathe to
admit it). Challenge 50, 109-120.

Milanovic, B. and S. Yitzhaki (2002). Decomposing world income distribution: does
the world have a middle class? Review of Income and Wealth 48, 155-78.

Modarres, R. and J. L. Gastwirth (2006). A cautionary note on estimating the standard
error of the Gini index of inequality. Oxford Bulletin of Economics And Statistics 68,
385-90.

Mookherjee, D. and A. E. Shorrocks (1982). A decomposition analysis of the trend in
UK income inequality. The Economic Journal 92, 886-902.

Morduch, J. and T. Sicular (2002). Rethinking inequality decomposition, with evi-
dence from rural China. The Economic Journal 112, 93-106.

Morgan, J. N. (1962). The anatomy of income distribution. Review of Economics and
Statistics 44, 270-83.

Morgan, J. N., M. H. David, W. J. Cohen, and A. E. Brazer (1962). Income and Welfare
in The United States. New York: McGraw-Hill.

Moyes, P. (1987). A new concept of Lorenz domination. Economics Letters 23, 203-07.

Moyes, P. (1989). Equiproportionate growth of incomes and after-tax inequality.
Bulletin of Economic Research 41, 287-93.

Moyes, P. (2007). An extended Gini approach to inequality measurement. Journal of
Economic Inequality 5, 279-303.

Muellbauer, J. (1974). Inequality measures, prices and household composition. Review
of Economic Studies 41, 493-504.

Musgrave, R. A. and T. Thin (1948). Income tax progression, 1929-48. Journal of
Political Economy 56, 498-514.

Nair, U. S. (1936). The standard error of Gini’s mean difference. Biometrika 28, 428-36.

Nicholson, R. J. (1969). Economic Statistics and Economic Problems. London: McGraw-
Hill.

216



Bibliography

Nitsch, V. (2005). Zipf zipped. Journal of Urban Economics 57, 86-100.

Novotny, J. (2007). On the measurement of regional inequality: does spatial dimen-
sion of income inequality matter? The Annals of Regional Science 41, 563-80.

Nygard, F. and A. Sandstrom (1981). Measuring Income Inequality. Stockholm, Sweden:
Almquist Wicksell International.

Nygard, F. and A. Sandstrom (1985). Estimating Gini and entropy inequality parame-
ters. Journal of Official Statistics 1, 399-412.

Nygard, F. and A. Sandstrom (1989). Income inequality measures based on sample
surveys. Journal of Econometrics 42, 81-95.

OECD (2008). Growing Unequal? Income Distribution And Poverty In OECD Countries.
Organisation For Economic Co-operation and Development.

Ogwang, T. (2000). A convenient method of computing the Gini index and its
standard error. Oxford Bulletin of Economics and Statistics 62, 123-29.

Ogwang, T. (2003). Bounds of the Gini index using sparse information on mean
incomes. Review of Income and Wealth 49, 415-23.

Ogwang, T. (2004). A convenient method of computing the Gini index and its stan-
dard error: some further results: reply. Oxford Bulletin of Economics and Statistics 66,
435-37.

Ogwang, T. and U. L. G. Rao (2000). Hybrid models of the Lorenz curve. Economics
Letters 69, 39-44.

Ok, E. A. (19935). Fuzzy measurement of income inequality: a class of fuzzy inequality
measures. Social Choice and Welfare 12(2), 111-36.

Okner, B. A. (1972). Constructing a new data base from existing microdata sets: the
1966 MERGE file. Annals of Economic and Social Measurement 1, 325-42.

Okner, B. A. (1975). Individual taxes and the distribution of income. In J. D. Smith
(Ed.), The Personal Distribution of Income and Wealth. New York: National Bureau of
Economic Research.

Okun, A. M. (1975). Equality and Efficiency: The Big Trade-off. Washington: Brookings
Institution.

Olken, B. (2005). Revealed community equivalence scales. Journal of Public Eco-
nomics 89, 545-66.

Ortega, P., G. Martin, A. Fernandez, M. Ladoux, and A. Garcia (1991). A new func-
tional form for estimating Lorenz curves. Review of Income and Wealth 37(12),
447-52.

Paglin, M. (1975). The measurement and trend of inequality: a basic revision. Ameri-
can Economic Review 65, 598-609.

Pareto, V. (1896). La courbe de la répartition de la richesse. In C. Viret-Genton (Ed.),
Recueil Publié par la Faculté de Droit a I’Occasion de I’Exposition Nationale Suisse, Geneva
1896, pp. 373-87. Lausanne: Université de Lausanne.

Pareto, V. (1965). Ecrits sur La Courbe de la Repartition de la Richesse, Volume 3 of Oeuvres
Completes. Geneva: Librairie Droz. Edited by Busino, G.

Pareto, V. (1972). Manual of Political Economy. London: Macmillan. Edited by Schwier,
A. S. and Page, A. N.

Pareto, V. (2001). On the distribution of wealth and income. In M. Baldassarri and
P. Ciocca (Eds.), Roots of the Italian School of Economics and Finance: From Ferrara
(1857) to Einaudi (1944), Volume 2, pp. 231-76. Houndmills: Palgrave.

217



Bibliography

Parker, S. C. (1999). The generalised beta as a model for the distribution of earnings.
Economics Letters 62(2), 197-200.

Paul, S. (1999). The population sub-group income effects on inequality: analytical
framework and an empirical illustration. Economic Record 75(229), 149-55.

Paul, S. (2004). Income sources effects on inequality. Journal of Development Eco-
nomics 73, 435-51.

Pen, J. (1971). Income Distribution. London: Allen Lane, The Penguin Press.

Pen, J. (1974). Income Distribution (Second edn.). London: Allen Lane, The Penguin
Press.

Persky, J. (1992). Retrospectives: Pareto’s law. The Journal of Economic Perspectives 6(2),
181-92.

Phelps, E. S. (1973). Economic Justice. Harmondsworth: Penguin.

Pigou, A. C. (1952). The Economics of Welfare (Fourth edn.). London: Macmillan.

Pirttild, J. and R. Uusitalo (2010). A ‘leaky bucket’ in the real world: Estimating
inequality aversion using survey data. Economica 77, 60-76.

Pistolesi, N. (2009). Inequality of opportunity in the land of opportunities, 1968-
2001. Journal of Economic Inequality 7, 411-33.

Podder, N. and S. Chatterjee (2002). Sharing the national cake in post reform New
Zealand: income inequality trends in terms of income sources. Journal of Public
Economics 86, 1-27.

Polanyi, G. and J. B. Wood (1974). How much inequality? Research monograph,
Institute of Economic Affairs, London.

Prest, A. R. and T. Stark (1967). Some aspects of income distribution in the UK since
World War II. Manchester School 35, 217-43.

Preston, I. (2007). Inequality and income gaps. Research on Economic Inequality 15,
33-56.

Pyatt, G. (1976). On the interpretation and disaggregation of Gini coefficients. The
Economic Journal 86, 243-55.

Quandt, R. (1966). Old and new methods of estimation and the Pareto distribution.
Metrika 10, 55-82.

Rajaraman, I. (1975). Poverty, inequality and economic growth: Rural Punjab,
1960/1-1970/1. Journal of Development Studies 11, 278-90.

Ram, R. (1979). International income inequality: 1970 and 1978. Economics Letters 4,
187-90.

Ram, R. (1984). Another perspective on changes in international inequality from 1950
to 1980. Economics Letters 16, 187-90.

Ram, R. (1987). Intercountry inequalities in income and ‘index of net social progress’:
evidence from recent data. Economics Letters 24, 295-98.

Ram, R. (1992). International inequalities in human development and real income.
Economics Letters 38, 351-54.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications (Second edn.).
New York: John Wiley.

Rao, U. L. P. and A. Y. P. Tam (1987). An empirical study of selection and estimation
of alternative models of the Lorenz curve. Journal of Applied Statistics 14, 275-80.

218



Bibliography

Rasche, R. H., J. Gaffney, A. Y. C. Koo, and N. Obst (1980). Functional forms for
estimating the Lorenz curve. Econometrica 48, 1061-62.

Ravallion, M. (1994). Poverty comparisons using noisy data on living standards.
Economics Letters 45, 481-85.

Rawls, J. (1971). A Theory of Justice. Cambridge, Massachusetts: Harvard University
Press.

Rees, J. (1971). Equality. London: Pall Mall.

Rein, M. and S. M. Miller (1974, July/August). Standards of income redistribution.
Challenge July/August, 20-26.

Reynolds, A. (2006). Income and Wealth. Westport, Connecticut: Greenwood Press.

Riese, M. (1987). An extension of the Lorenz diagram with special reference to survival
analysis. Oxford Bulletin of Economics and Statistics 49(5), 245-50.

Rietveld, P. (1990). Multidimensional inequality comparisons. Economics Letters 32,
187-92.

Rohde, N. (2008). Lorenz curves and generalised entropy inequality measures. In
D. Chotikapanich (Ed.), Modeling Income Distributions and Lorenz Curves, Chapter 15,
pp. 271-84. New York: Springer.

Rosenbluth, G. (1955). Measures of concentration. In G. J. Stigler (Ed.), Business
Concentration and Price Policy. Princeton: National Bureau of Economic Research.
Royal Commission on the Distribution of Income and Wealth (1975). Initial Report on

the Standing Reference, Cmnd 6171. London: HMSO.

Royal Commission on the Distribution of Income and Wealth (1976). Second Report
on the Standing Reference, Cmnd 6626. London: HMSO.

Royal Commission on the Taxation of Profits and Income (1955). Final Report on the
Standing Reference, Cmnd 9474. London: HMSO.

Russet, B. M. (1964). Inequality and instability: the relation of land tenure to politics.
World Politics 16, 442-54.

Ryscavage, P. (1999). Income Inequality in America: An Analysis of Trends. New York:
M.E. Sharpe.

Sala-i-Martin, X. (2006). The world distribution of income: falling poverty
and ... convergence, period. Quarterly Journal of Economics 121, 351-97.

Salani€, B. (2000). Microeconomics of Market Failures. Cambridge, Massachusetts: MIT
Press.

Salanié, B. (2003). The Economics of Taxation. Cambridge Massachusetts: MIT Press.

Salas, R. (1998). Welfare-consistent inequality indices in changing populations: the
marginal population replication axiom. A note. Journal of Public Economics 67,
145-50.

Salem, A. B. Z. and T. D. Mount (1974). A convenient descriptive model of income
distribution: the Gamma density. Econometrica 42, 1115-27.

Sandstrom, A., J. H. Wretman, and B. Walden (1985). Variance estimators of the Gini
coefficient: simple random sampling. Metron 43, 41-70.

Sandstrom, A., J. H. Wretman, and B. Walden (1988). Variance estimators of the
Gini coefficient: probability sampling. Journal of Business and Economic Statistics 6,
113-20.

219



Bibliography

Saposnik, R. (1981). Rank-dominance in income distribution. Public Choice 36,
147-51.

Saposnik, R. (1983). On evaluating income distributions: rank dominance, the
Suppes-Sen grading principle of justice and Pareto optimality. Public Choice 40,
329-36.

Sarabia, J. M., E. Castillo, and D. J. Slottje (1999). An ordered family of Lorenz curves.
Journal of Econometrics 91, 43-60.

Sarabia, J. M., E. Castillo, and D. J. Slottje (2002). Lorenz ordering between McDon-
ald’s generalized functions of the income size distribution. Economics Letters 75,
265-70.

Sastre, M. and A. Trannoy (2002). Shapley inequality decomposition by factor com-
ponents: some methodological issues. Journal of Economics Supp 9, 51-90.

Sastry, D. V. S. and U. R. Kelkar (1994). Note on the decomposition of Gini inequality.
The Review of Economics and Statistics 76, 584-86.

Satchell, S. E. (1978). Source and subgroup decomposition inequalities for the Lorenz
curve. International Economic Review 28(6), 321-29.

Saunders, T. J. (1970). Plato: The Laws. Harmondsworth: Penguin.

Savaglio, E. (2006). Multidimensional inequality with variable population size. Eco-
nomic Theory 28, 85-94.

Schechtman, E. and S. Yitzhaki (1999). On the proper bounds of Gini correlation.
Economic Letters 63, 133-38.

Schluter, C. and M. Trede (2002). Tails of Lorenz curves. Journal of Econometrics 109,
151-66.

Schutz, R. R. (1951). On the measurement of income inequality. American Economic
Review 41, 107-22.

Schwartz, J. E. and C. Winship (1980). The welfare approach to measuring inequality.
Sociological Methodology 11, 1-36.

Seidl, C. (1988). Poverty measurement: a survey. In D. Bos, M. Rose, and C. Seidl (Eds.),
Welfare and Efficiency in Public Economics, pp. 71-147. Berlin, Heidelberg: Springer-
Verlag.

Sen, A. K. (1970). Collective Choice and Social Welfare. Edinburgh: Oliver and Boyd.

Sen, A. K. (1973). On Economic Inequality. Oxford: Clarendon Press.

Sen, A. K. (1974). Informational bases of alternative welfare approaches. Journal of
Public Economics 3, 387-403.

Sen, A. K. (1976a). Poverty: an ordinal approach to measurement. Econometrica 44,
219-31.

Sen, A. K. (1976b). Real national income. Review of Economic Studies 43, 19-39.

Sen, A. K. (1977). On weights and measures: informational constraints in social
welfare analysis. Econometrica 45, 1539-72.

Sen, A. K. (1980). Equality of what? In S. McMurrin (Ed.), Tanner Lectures on Human
Values, Volume 1. Cambridge: Cambridge University Press.

Sen, A. K. (1992). Inequality Reexamined. Cambridge, Mass: Harvard University Press.

Sen, A. K. (1997). From income inequality to economic inequality. Southern Economic
Journal 64, 383-401.

220



Bibliography

Sen, A. K. and ]. E. Foster (1997). On Economic Inequality (Second edn.). Oxford:
Clarendon Press.

Shorrocks, A. F. (1978). Income inequality and income mobility. Journal of Economic
Theory 19, 376-93.

Shorrocks, A. . (1980). The class of additively decomposable inequality measures.
Econometrica 48, 613-25.

Shorrocks, A. F. (1982). Inequality decomposition by factor components. Economet-
rica 50(1), 193-211.

Shorrocks, A. E (1983). Ranking income distributions. Economica 50, 3-17.

Shorrocks, A. F. (1984). Inequality decomposition by population subgroups. Economet-
rica 52, 1369-85.

Shorrocks, A. F. (1988). Aggregation issues in inequality measurement. In W. Eichhorn
(Ed.), Measurement in Economics. Heidelberg: Physica Verlag.

Shorrocks, A. E (2004). Inequality and welfare evaluation of heterogeneous income
distributions. Journal of Economic Inequality 2, 193-218.

Shorrocks, A. E. and J. E. Foster (1987). Transfer-sensitive inequality measures. Review
of Economic Studies 54, 485-98.

Shorrocks, A. F. and D. ]. Slottje (2002). Approximating unanimity orderings: an
application to Lorenz dominance. Journal of Economics Supp 9, 91-117.

Shorrocks, A. F. and G. Wan (2005). Spatial decomposition of inequality. Journal of
Economic Geography §, 59-81.

Sicular, T., Y. Ximing, B. Gustaffson, and L. Shi (2007). The urban-rural gap and
inequality in China. Review of Income and Wealth §3, 93-126.

Sierminska, E., A. Brandolini, and T. M. Smeeding (2006). The Luxembourg Wealth
Study—a cross-country comparable database for household wealth research. Journal
of Economic Inequality 4, 375-83.

Silber, J. (1989). Factor components, population subgroups and the computation of
the Gini index of inequality. Review of Economics and Statistics 71, 107-15.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London:
Chapman and Hall.

Simon, H. A. (1955). On a class of skew distribution functions. Biometrika 52, 425-40.

Simon, H. A. (1957). The compensation of executives. Sociometry 20, 32-35.

Simon, H. A. and C. P. Bonini (1958). The size distribution of business firms. American
Economic Review 48, 607-17.

Simonoff, J. S. (1996). Smoothing Methods in Statistics. New York: Springer.

Singh, S. K. and G. S. Maddala (1976). A function for the size distribution of income.
Econometrica 44, 963-70.

Slottje, D. J. (1984). A measure of income inequality based upon the beta distribution
of the second kind. Economics Letters 15, 369-75.

Slottje, D. J. (1987). Relative price changes and inequality in the size distribution of
various components of income: a multidimensional approach. Journal of Business
and Economic Statistics 5, 19-26.

Smeeding, T. M., M. O’Higgins, and L. Rainwater (1990). Poverty, Inequality and Income
Distribution in Comparative Perspective. Hemel Hempstead: Harvester Wheatsheaf.

221



Bibliography

Soltow, L. (1975). The wealth, income and social class of men in large northern cities
of the United States in 1860. In J. D. Smith (Ed.), The Personal Distribution of Income
and Wealth. New York: National Bureau of Economic Research.

Stark, T. (1972). The Distribution of Personal Income in The United Kingdom 1949-1963.
London: Cambridge University Press.

Steindl, J. (1965). Random Processes and the Growth of Firms: A Study of the Pareto Law.
New York: Hafner Press.

Stevenson, B. and J. Wolfers (2008, August). Happiness inequality in the United States.
Working Paper 14220, National Bureau of Economic Research.

Summers, R. and A. W. Heston (1988). A new set of international comparisons of real
product and price levels: estimates for 130 countries, 1950-1985. Review of Income
and Wealth 34, 1-25.

Summers, R. and A. W. Heston (1991). The Penn world table (mark 5): an expanded
set of international comparisons 1950-1988. Quarterly Journal of Economics 106,
327-68.

Taguchi, T. (1968). Concentration curve methods and structures of skew populations.
Annals of the Institute of Statistical Mathematics 20, 107-41.

Taille, C. (1981). Lorenz ordering within the generalized gamma family of income
distributions. In P. Taille, G. P. Patil, and B. Baldessari (Eds.), Statistical Distributions
in Scientific Work. Boston: Reidel.

Takahashi, C. (1959). Dynamic Changes of Income and its Distribution in Japan. Tokyo:
Kinokuniya Bookstore Co.

Tarozzi, A. and A. S. Deaton (2009). Using census and survey data to estimate poverty
and inequality for small areas. The Review of Economics and Statistics 91, 773-92.

Tawney, H. R. (1964). Equality. London: Allen and Unwin.

Temkin, L. S. (1986). Inequality. Philosophy and Public Affairs 15, 99-121.

Temkin, L. S. (1993). Inequality. Oxford: Oxford University Press.

Thatcher, A. R. (1968). The distribution of earnings of employees in Great Britain.
Journal of The Royal Statistical Society A 131, 133-70.

Theil, H. (1967). Economics and Information Theory. Amsterdam: North Holland.

Theil, H. (1979a). The measurement of inequality by components of income. Eco-
nomics Letters 2, 197-99.

Theil, H. (1979b). World income inequality and its components. Economics Letters 2,
99-102.

Theil, H. (1989). The development of international inequality 1960-1985. Journal of
Econometrics 42, 145-55.

Thistle, P. D. (1989a). Duality between generalized Lorenz curves and distribution
functions. Economic Studies Quarterly 40(6), 183-87.

Thistle, P. D. (1989b). Ranking distributions with generalized Lorenz curves. Southern
Economic Journal 56, 1-12.

Thistle, P. D. (1990). Large sample properties of two inequality indices. Economet-
rica 88, 725-28.

Thon, D. (1979). On measuring poverty. Review of Income and Wealth 25§, 429-39.

Thon, D. (1981). Income inequality and poverty; some problems. Review of Income and
Wealth 27, 207-10.

222



Bibliography

Thon, D. (1982). An axiomatization of the Gini coefficient. Mathematical Social Sci-
ence 2, 131-43.

Thon, D. (1983a). Lorenz curves and Lorenz coefficient: a sceptical note.
Weltwirtschaftliches Archiv 119, 364-67.

Thon, D. (1983b). A note on a troublesome axiom for poverty indices. The Economic
Journal 93, 199-200.

Thurow, L. C. (1970). Analysing the American income distribution. American Economic
Review 60, 261-69.

Thurow, L. C. (19795). Generating Inequality. New York: Basic Books.

Tobin, J. (1970). On limiting the domain of inequality. Journal of Law and Eco-
nomics 13, 263-77. Reprinted in Phelps (1973).

Toyoda, T. (1980). Decomposability of inequality measures. Economic Studies Quar-
terly 31(12), 207-46.

Tsui, K.-Y. (1995). Multidimensional generalizations of the relative and absolute
inequality indices: the Atkinson-Kolm-Sen approach. Journal of Economic Theory 67,
251-65.

Tuomala, M. (1990). Optimal Income Tax and Redistribution. London: Oxford University
Press.

United Nations Economic Commission for Europe (1957). Economic Survey of Europe
in 1956. Geneva: United Nations.

UNU-WIDER (2005). World income inequality database, version 2.0a. Technical
report, UNU-WIDER.

van der Wijk, J. (1939). Inkomens—En Vermogensverdeling. Number 26 in Nederlandsch
Economisch Instituut. Haarlem: De Erven F. Bohn, N. V.

Van Kerm, P. (2002). Inference on inequality measures: a Monte Carlo experiment.
Journal of Economics Supp 9, 283-06.

Victoria-Feser, M.-P. (1999). The sampling properties of inequality indices: comment.
In J. Silber (Ed.), Handbook on Income Inequality Measurement, pp. 260-67. Dewenter:
Kluwer.

Weisbrod, B. A. and W. L. Hansen (1968). An income-net worth approach to measur-
ing economic welfare. American Economic Review 58, 1315-29.

Weiss, Y. (1972). The risk element in occupational and educational choices. Journal of
Political Economy 80, 1203-13.

Welniak, E. J. (2003). Measuring household income inequality using the CPS. In
J. Dalton and B. Kilss (Eds.), Special Studies in Federal Tax Statistics 2003. Washington,
DC: Statistics of Income Directorate, Inland Revenue Service.

Weymark, J. A. (1981). Generalized Gini inequality indices. Mathematical Social Sci-
ences 1, 409-30.

Weymark, J. A. (2006). The normative approach to the measurement of multidimen-
sional inequality. In Inequality and Economic Integration, F. Farina and E. Sarvaglio
(Eds). London: Routledge.

Wiles, P. J. D. (1974). Income Distribution, East and West. Amsterdam: North Holland.

Wiles, P. J. D. and S. Markowski (1971). Income distribution under communism and
capitalism. Soviet Studies 22, 344-69, 485-511.

223



Bibliography

Wilfling, B. (1996). The Lorenz-ordering of generalized beta-II income distributions.
Journal of Econometrics 71, 381-88.

Wilfling, B. and W. Kramer (1993). The Lorenz-ordering of Singh-Maddala income
distributions. Economics Letters 43, 53-57.

Williams, R. and D. P. Doessel (2006). Measuring inequality: tools and an illustration.
International Journal for Equity in Health §, 1-8.

Wilson, J. (1966). Equality. London: Hutchinson.

Wold, H. O. A. and P. Whittle (1957). A model explaining the Pareto distribution of
wealth. Econometrica 25, 591-95.

Wolff, E. N. and A. Zacharias (2007). The distributional consequences of government
spending and taxation in the U.S., 1989 and 2000. Review of Income and Wealth 53,
692-715.

World Bank (2004). A Better Investment Climate for Everyone: World Development Report
2005. New York: The World Bank and Oxford University Press.

World Bank (2005). Equity and Development: World Development Report 2006. New York:
The World Bank and Oxford University Press.

Yaari, M. E. (1988). A controversial proposal concerning inequality measurement.
Journal of Economic Theory 44(4), 381-97.

Yitzhaki, S. (1979). Relative deprivation and the Gini coefficient. Quarterly Journal of
Economics 93, 321-24.

Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Eco-
nomic Review 24(10), 617-28.

Yitzhaki, S. (1998). More than a dozen alternative ways of spelling Gini. Research on
Economic Inequality 8, 13-30.

Yitzhaki, S. and R. Lerman (1991). Income stratification and income inequality. Review
of Income and Wealth 37(9), 313-29.

Yoshida, T. (1991). Social welfare rankings on income distributions: alternative views
of efficiency preference. Discussion Paper 10, Osaka University.

Young, A. A. (1917). Do the statistics of the concentration of wealth in the United
States mean what they are commonly supposed to mean? Journal of The American
Statistical Association 15, 471-84.

Yu, L., R. Luo, and L. Zhan (2007). Decomposing income inequality and policy
implications in rural China. China and World Economy 18, 44-58.

Yule, G. U. and M. G. Kendall (1950). An Introduction to The Theory of Statistics.
London: Griffin.

Zheng, B. (1997). Aggregate poverty measures. Journal of Economic Surveys 11(2),
123-62.

Zheng, B. (2007). Unit-consistent decomposable inequality measures. Econom-
ica 74(293), 97-111.

Zipt, G. K. (1949). Human Behavior and the Principle of Least Effort. Reading, Mass:
Addison-Wesley.

224



Index

Aaberge, R., 181, 182
Abel-Smith, B., 191
Aboudj, R., 186
Abul Naga, R.H., 179
Aczél, J., 195
Adams, K., 187
Additivity, 42, 144
Addo, H., 178, 181
Administrative data, 190
Aghevli, B.B., 193
Aigner, D.J., 185, 194
Aitchison, J., 85, 95, 162, 187, 193,
194
Alesina, A., 179
Alker, H.R]., 178, 181, 182
Allison, P.D., 181, 185, 194
Allison, R.A., 179
Amiel, Y., 75, 76, 179, 181, 183, 186
Anand, S., 180, 191, 192, 195
Araar, A., 195
Arnold, B.C., 181, 184, 189, 190
Arnold, S., 195
Aronson, J.R., 195
Arrow, K J., 185
Aten, B., 192
Atkinson, A.B., 51, 52, 61, 98, 133, 178,
182-185, 188, 190-192
Atkinson index, 52, 53, 61, 65, 71, 73, 75,
113, 128, 152, 167, 185, 186
and Dalton index, 52, 163, 164
and generalized entropy index, 67, 166
and information-theoretic measure, 61
and SWF, 53, 144
decomposition, 166, 167
sensitivity of, 124, 131, 133

Bacon, R., 192

Bagley, C., 191

Barrett, R., 181, 186
Basmann, R.L., 181, 190
Basuy, K., 181, 182
Batchelder, A.B., 179
Battistin, E., 188

Bauer, P.T., 178

Baxter, M.A., 194
Bayeux

bishop of, 189
Beach, C.M., 194
Beblo, M., 192
Becker, G.S., 192
Beckerman, W., 192
Benabou, R., 179
Bentzel, R., 185
Benus, J., 192
Berger, R.L., 180, 182, 187, 193
Bernadelli, H., 189
Bernstein, J., 182
Berrebi, Z.M., 181, 182
Berry, A., 193
Berry, D.A,, 160, 180, 187, 193
Beta distribution, 161, 189
Beta function, 160
Bhattacharya, D., 194
Biewen, M., 194
Biham, O., 188
Binder, D.A., 194
Bishop, J.A., 71, 182, 194
Bjerke. K., 188
Blackorby, C., 184
Blitz, R.C., 181
Blundell, R., 188
Boadway, R., 183
Bonferroni, C., 187
Bonferroni index, 187
Bonini, C.P,, 189
Bootstrap, 194
Bordley, R.E.,, 190
Borooah, VK., 195
Bosmans, K., 179, 184, 185, 195
Bossert, W., 181, 185
Boulding, K.E., 178
Bourguignon, F., 185, 193, 195
Bowen, I., 179
Bowman, M.J., 188
Brandolini, A., 185, 191, 192
Braulke, M., 195
Brazer, A.E., 191
Brewer, M., 190

225



Index

Brittain, J.A., 181

Brockett, P.L., 190
Bronfenbrenner, M., 98, 187
Broome, J., 179

Brown, A.J., 187

Brown, J.A.C., 85, 95, 162, 187, 193, 194
Bruce, N., 183

Bryan, K.A., 191

Budd, E.C., 180, 191
Buhmann, B., 191
Burkhauser, R.V., 191, 194
Butler, J.S., 191

Butler, RJ., 182

Campano, F, 189

Canberra Group, 191

Cardinal equivalence, 10, 41, 52, 59, 61, 142

Cardinal representation, 142, 165

Carlsson, F., 183

Casella, G., 180, 182, 187, 193

Castillo, E., 189, 190

Chakraborti, S., 182, 194

Chakraborty, A.B., 182

Chakravarty, S.R., 181, 182, 187, 190, 195

Champernowne, D.G., 160, 180, 182, 184,
186, 188, 189, 194

Champernowne distribution, 160

Chatterjee, S., 195

Chesher, A., 194

Ching, P., 195

Chiou, J.-R., 194

Chipman, J.S., 187

Chotikapanich, D., 190, 194

Clementi, F., 188

Coefficient of variation, 28, 29, 38, 66, 69,
100, 101, 123, 124, 143, 169, 170

and decomposition, 169
standard error of, 130, 193

Cohen, J.K., 181

Cohen, WJ., 191

Comparative function, 183

Concavity, 41-44, 46-48, 184

Concentration ratio, 181

Constant elasticity, 41, 43, 46

Constant relative inequality aversion, 41, 43,
75

Constant residual progression, 95

Continuous distribution, 113, 154, 156

Cortese, C.F.,, 181

Coulter, FA.E., 149, 179, 191

Cowell, FA., 41, 67,75, 76, 149, 178-188,
191, 193-195

Cramer, ].S., 189

Crawford, 1., 192

Creedy, J., 182, 183

Crew, E.L., 181

Cronin, D.C., 189

226

Cumulative frequency, 20, 31, 49
and Parade, 21, 180
Current Population Survey, 37, 105, 191, 194

Dagum, C., 184, 189

Dahlby, B.G., 184

Dalton, H., 61, 181, 185

Dalton index, 61, 63, 163
and Atkinson index, 52, 163, 164

Damjanovic, T., 181

Dardanoni, V., 184

Daruvala, D., 183

Das, T., 195

Dasgupta, P., 184

Data collection, 104

David, H.A., 181, 193

David, M.H., 191

Davidovitz, L., 183

Davidson, R., 193, 194

Davies, J.B., 184, 193

Davis, H.T., 182, 188

Davison, A.C., 194

de Sarachu, A., 185

Deaton, A.S., 192

Decomposition of inequality, 11, 66, 68, 70,

73, 146, 195

and Gini coefficient, 66, 165
by income components, 161, 169, 196
by population subgroups, 165-168, 192

Deininger, K., 192

Deltas, G., 193

DeNavas-Walt, C., 37

Density function, 78, 80, 127, 157, 160, 161
and interpolation, 127, 174, 193
estimation of, 116, 172

Devooght, K., 187

Di Tella, R., 179

Diez, H., 185

Ding, H., 188

Distance, 42, 61, 71, 73, 165, 185, 186
and income differences, 23-25
and income shares, 57, 59, 68, 69, 73, 139
and principle of transfers, 70

Distance function, 61, 185

Doessel, D.P,, 14

Donaldson, D., 181, 184

Dorfman, P., 181

Duclos, J.-Y., 194, 195

Duncan, O.D., 181

Dutta, B., 184

Earnings, 5, 33, 95, 97, 99, 100, 108, 112, 145,
146, 182, 188, 190
lognormal distribution, 95, 96, 188
Ebert, U., 179, 184-187
Eichhorn, W., 38, 186
Elbers, C., 195



Index

Elliott, S., 179

Elteto, O., 181

Entropy, 54

Esberger, S.E., 183

Esteban, J., 184, 189

Euroland, 192

Evaluation function, 113, 114, 170
Evans, M., 189, 195

Falk, R.E, 181
Family Expenditure Survey, 190
Family Resources Survey, 105, 106, 190
Fase, M.M.G, 188
Feldstein, M., 179
Fellman, J., 181
Feng, S., 191, 194
Ferber, R., 191
Fernandez, A., 189
Ferreira, FH.G., 192, 195
Fichtenbaum, R., 194
Fields, G.S., 179, 195
Fiorio, C., 195
Firms, 99, 185
Fisk, P.R., 160, 189
Flachaire, E., 194
Fleurbaey, M., 191
Formby, J.P., 71, 182, 194
Forsythe, J., 191
Foster, J.E., 164, 178, 179, 182, 184,
186, 195
Francis, W.L., 181, 185
Frequency distribution, 18, 20, 23, 27, 29, 33,
49, 50, 87, 88, 127, 174, 180
estimation, 114
Pareto, 89
Freund, J.E., 160, 180, 182, 187
Frigyes, E., 181
Frosini, B.V., 186, 195
Frosztega, M., 190
Fukushige, M., 195
Functional form, 78, 79, 87, 88, 91, 187, 195
empirical justification, 95-97, 99
fitting, 135-138, 140, 141, 156-160, 162,
189, 195
Funke, H., 38

Gabaix, X., 188

Gaertner, W., 179, 183

Gail, M.H., 195

Gallegati, M., 188

Gamma distribution, 161, 189
Gamma function, 159, 161
Garcia, A., 189

Gardiner, K., 183

Gastwirth, J.L., 181, 193, 195
Gaulier, G., 191

Gehrig, W., 186

Generalized Beta distribution of the second
kind, 190
Generalized entropy index, 67, 68, 71, 149,
155, 156, 165-167, 170, 186, 194
and moments, 172
and quasi-linear mean, 186
Generalized Lorenz curve, 47, 48, 76, 169,
170, 184
and negative income, 169
estimation, 194
for Pareto distribution, 100
Geometric mean, 23, 84, 136, 153, 154,
169
Giles, D.E.A., 193
Gini coefficient, 26, 38, 64, 71, 73, 75, 85,
100, 101, 113, 114, 122, 128, 135, 139,
154, 155, 170, 179, 181, 193
and criterion of fit, 139
and decomposition, 66, 165, 195, 196
axiomatization, 186
generalizations of, 181
grouped data, 121, 128, 193
standard error of, 130, 193
Gini, C., 181
Glaister, S., 183
Glasser, G.J., 193
Glauberman, M., 193
Glewwe, P, 179, 195
Goldberger, J.S., 194
Goodman, A., 191
Gordon, J.P.F, 98
Gottschalk, P., 192
Graaf, J. de V., 183
Griffiths, W., 194
Grosfeld, 1., 183
Gustaffson, B., 196
Guthrie, HW.,, 191

Hagerbaumer, J.B., 179, 193
Hainsworth, G.B., 181
Hammond, PJ., 185
Hanna, FA., 191
Hannah, L., 185
Hansen, W.L., 191
Happiness, 179, 183, 191
Hardy, G., 184, 186
Harrison, A.J., 189-191
Harsanyi, J., 179

Hart, P.E., 99

Harvey, A., 182
Hasegawa, H., 194
Hastings, N., 189, 195
Hayakawa, M., 189
Hayes, K.J., 190

Heins, AJ., 185

Helmert, F.R., 181
Hempenius, A.L., 187

227



Index

Herfindahl index, 59, 67, 68, 122, 136, 143,
155, 185

Herfindahl, O.C., 64, 185

Heston, A.W.,, 192

Hill, M.S., 191

Hill, T.P,, 188

Hills, J.R., 149

Hinkley, D.V., 194

Histogram, 19

split, 127, 175

HM Treasury, 183

Hobijn, B., 192

Hochman, H., 179

Horrace, W., 194

Households Below Average Income, 106, 110,
115, 190

Houtenville, A.J., 191

Howes, S.R., 196

Hoy, M., 184

Hu, B., 195

Human Development Index, 191

Hurn, S., 183

Hussain, A., 196

Income
comparability, 6, 7, 111, 178, 192
differences, 10-12, 19, 23, 38, 64,
69
equivalized, 42, 109, 179
growth, 144, 148, 179
lifetime, 4, 5, 14, 111
measurability, 6, 178
negative, 37, 75, 169, 170, 181
specification of, 4, 96, 105, 107, 108, 142,
190, 191
time period, 110
Income distribution, 12, 17, 105, 108
analogy with probability, 53, 54
and Lorenz ranking, 47
and Pareto diagram, 88
and Pen’s parade, 18

comparison, 7, 9, 24, 31, 34, 48, 64, 67, 69,

72, 84, 182, 192
components of, 146
distance, 3, 60

functional form, 79, 97, 157, 158, 161, 162,

188, 189
grouped data, 120, 121, 128
Laws, 187
sample, 110
truncation, 135
typical shape, 80, 141

Income share, 2, 33, 34, 42, 56, 59, 63, 68, 73,

125,139, 164, 186
Inequality

and distance, 57, 59-61, 68-71, 73, 75, 139,

165, 185, 186

228

and happiness, 191

and income gaps, 187

and justice, 7

and poverty, 15, 179

aversion, 41, 43, 50, 61, 71, 72, 75, 135,
148, 163, 165, 185

concern for, 12

decomposition, 11, 66, 68, 70, 73, 146, 161,

164-169, 182, 187, 192, 195, 196
fuzzy, 182
multidimensional, 185
Inequality measures
and Lorenz curve, 27, 53, 71
approaches to, 39, 40, 67
computation, 112
construction of, 61
definitions, 153-156
for continuous distributions, 156
for discrete distributions, 154
grouped data, 120
how to choose, 67
interrelationships, 163
meaning of, 7
properties, 73, 153-156
sensitivity of, 53, 71
Information function, 57
Information theory, 53, 54, 58-61, 186
Interpolation, 126-128, 153, 174-176, 193
log-linear, 175
Pareto, 157, 193
split histogram, 127, 175
straight line, 176
Iritani, J., 184

Jakobsson, U., 38

Jasso, G., 181, 186, 190

Jencks, C., 178

Jenkins, S.P., 149, 178-180, 182, 190, 191,
194, 195

Jensen, B, 189

Johansson-Stenman, O., 183

Johnson, J.D., 190

Johnson, N.O., 188, 194

Jones, F.,, 149

Jorgenson, D.W., 179

Justice, 2, 3, 10, 12, 39, 179, 184, 186

Kakamu, K., 195

Kakwani, N., 190

Kaliski, S.F., 194

Kampelmann, S., 186

Kanbur, SM.N., 187, 196
Kaplow, L., 179

Kay, J.A., 185

Kelkar, U.R., 195

Kendall, M.G., 80, 130, 193, 195
Kernel function, 172, 173



Index

Klass, O.S., 188
Kleiber, C., 181, 187, 189, 195
Kloek, T., 189
Klonner, S., 189
Kmietowicz, Z.M., 188
Knaus, T., 192

Kolm index, 165
Kolm, S., 184-186
Kondor, Y., 181, 186
Koo, A.Y.C., 181
Kopczuk, W., 98
Korinek, A., 192

Kotz, S., 181, 187, 189, 190, 195
Kovacevic, M.S., 194
Kozumi, H., 194
Kramer, W., 189
Kravis, 1.B., 192
Krieger, A.N., 193
Krishnan, P, 185
Kroll, Y., 183

Kuga, K., 184, 185
Kurtosis, 188, 195
Kuznets, S., 181, 192

Ladoux, M., 189

Lagakos, D., 192

Lam, D., 181

Lambert, PJ., 178, 183-186, 195

Lanjouw, P., 195, 196

Lanza, G., 186

Larrimore, J., 194

Lasso de la Vega, M.C., 185

Layard, PR.G., 183

Least squares, 101, 137-139, 194

Lebergott, S., 80

Lefranc, A., 179

Leite, P.G., 195

Lerman, R., 195

Lerner, S.M., 191

Levine, D.B., 181

Levy, M., 188

Lewbel, A., 188

Likes, J., 194

Lin, E, 196

Lin, T., 181, 196

Lindgren, B.W., 160, 180, 187, 193

Lindley, D.V,, 156

Little, LM.D., 183

Littlewood, J., 184, 186

Log variance, 28, 38, 73
and principle of transfers, 164
non-decomposability, 165
standard error of, 130

Logarithmic transformation, 22, 23, 81, 83,

97, 168
Logistic function, 160

Lognormal distribution, 28, 80, 81, 84-86, 93,
100, 135, 136, 157, 188, 195
and aggregation, 95
and Lorenz curve, 83, 157
estimation of, 136
three-parameter, 85, 162
Lomnicki, Z.A., 193
Lorenz curve, 21, 22, 26, 37, 38, 48, 149, 151,
166, 181, 182, 184
absolute, 170
and hypothesis testing, 194
and incomplete moments, 182
and inequality measures, 27, 53, 71
and interpolation, 127, 128, 174
and negative income, 169, 181
and principle of transfers, 62
and shares ranking, 34, 35
and SWFs, 47
and Theil curve, 56
and variance of logarithms, 85
bounds on Gini, 193
computation, 114, 126
convexity, 21, 126, 181
definition, 154
empirical, 125
for lognormal distribution, 83, 157, 187
for Pareto distribution, 91
hybrid, 194
parameterization, 159, 190
symmetric, 83
transformations, 181
Lorenz, M.O., 181
Love, R., 185
Luo, R., 192
Luxembourg Income Study, 183, 192
Lydall, H.E, 96, 182

Maasoumi, E., 185
Maccabelli, T., 187
MacCulloch, R., 179
Maddala, G.S., 159, 189, 194
Majumder, A., 190

Malcai, O., 188

Malik, H.J., 194

Malmaquist, S., 183
Mandelbrot, B., 189
Mantrala, A., 190
Marchand, J., 194

Marfels, C., 186

Markowski, S., 182, 190
Marshall, A W., 184

Martin, G., 189

Martinez, L., 191

Maximum likelihood estimate, 136
Maynes, E.S., 191

Mayraz, G., 183

229



Index

McClements, L., 191
equivalance scale, 110

McDonald, J.B., 182, 189, 190, 193

McGregor, P.P.L., 195

McKee, P.M., 195

Mead, J.E., 185

Mehran, F, 193

Mehta, F.,, 193

Mera, K., 183

Metcalf, C.E., 189, 192

Method of moments, 136

Method of percentiles, 182

Micklewright, J., 133, 192

Milanovic, B., 179, 193

Miller, J.C.P,, 156

Miller, S.M., 178

Millimet, D.L., 183

Minimal majority measure, 27,

29, 182

Mirrlees, J.A., 183

Mistiaen, J.A., 192, 195

MLD index, 59, 74, 155, 166, 186

Mobility, 1, 11, 179, 189

Modarres, R., 193

Moments, 159-162, 171, 182
method of, 136, 137

Mookherjee, D., 195

Morduch, J., 195

Morgan, J.N., 191, 192

Morrisson, C., 193

Mount, T.D., 189

Moyes, P, 170, 181, 184

Muellbauer, J., 192

Mumbo Jumbo, 187

Muriel, A., 190

Musgrave, R. A., 86

Nair, U.S., 193

Nayak, T.K,, 193

Nicholson, R.J., 188

Nickell, S.J., 183

Nitsch, V., 188

Non-comparability, 7, 146, 147

Normal distribution, 80, 81, 83, 84, 86, 156,
187, 195

Novotny, J., 192

Nygard, F, 193, 194

OECD, 191

Ogwang, T., 193, 194
O’Higgins, M., 179, 192
Ok, E.A., 164, 182
Okner, B.A., 191

OKkun, AM., 179
Oldfield, Z., 191

Olken, B., 191

Olkin, I., 184

230

Ord, J.K., 130, 193, 195

Ordinal equivalence, 10, 14, 52, 66-70, 124,
135, 142, 166, 167, 169, 181, 186

Ortega, P., 189

Ozler, B., 195

Paglin, M., 180
Parade of dwarfs, 18, 20, 21, 23, 25-28,
32,37, 39, 46, 48, 53, 56, 69, 76,
114, 146
Parade ranking, see Quantile ranking
Pareto distribution, 87-89, 91, 93, 95, 96, 100,
124, 158, 189
and inequality, 93
and interpolation, 128
criteria of fit, 139
estimation, 135, 137
evidence, 188
generalized Lorenz curve of, 100
interpolation form, 157
Lorenz curve of, 91
properties, 156, 157
type III, 159
Pareto-Levy law, 189
Pareto, V., 187
Pareto’s a, 87-89, 91, 93-95, 98, 99, 100, 124,
126, 188, 199
and average/base index, 91
and French revolution, 188
and inequality, 93
and Lorenz curve, 92
and van der Wijk’s law, 158
estimation of, 135, 137-139, 175,
187, 194
in practice, 97, 188
Parikh, A., 195
Parker, S.C., 190
Paul, S., 195
Peacock, B., 189, 195
Pechman, J.A., 191
Pen, J., 18, 37, 180, 181,
187, 188
Perles, B.M., 180, 187
Persky, J., 187
Pfingsten, A., 185
Phelps, E.S., 179
Philipson, TJ., 192
Phillips, D., 190
Pigou, A.C., 187
Piketty, T., 98
Pirttila, J., 183
Pistolesi, N., 179
Plato, 24, 180
Podder, N., 190, 195
Polanyi, G., 182
Polovin, A., 181, 183
Polya G., 184, 186



Index

Poverty, 12, 13, 15, 17, 29, 31, 180
and inequality, 15, 179
line, 12, 29
measure, 63
Prais, S.J., 99
Prasada Rao, D.S., 190
Preference reversals, 183
Prest, A.R., 178, 191
Preston, 1., 187
Principle of population, 63, 64
Principle of transfers
and log variance, 164
and Lorenz curve, 62
heterogeneous populations, 186
strong, 68-70, 185, 186
weak, 62, 63, 67, 72, 84, 93, 143, 164, 175
Proctor, B. D., 37
Ptolemaic system, 80
Purchasing Power Parity, 192
Pyatt, G., 195

Quan, N.T., 181
Quandt, R., 189, 194
Quantile ranking, 33, 34
and SWF, 46
Quantiles, 32, 33, 56
and dispersion, 33
Quasi-linear mean, 186

R-squared, 138, 139, 141

Radner, D.B., 191

Rainwater, L., 191, 192

Rajaraman, 1., 188

Ram, R., 193

Random process, 88, 187

Ranking, 31, 32, 34, 40, 69, 85, 144, 169, 182
and decomposition, 64, 66, 67
ordinal equivalence, 52
quantiles, 33, 46
shares, 34, 35, 47

Ransom, M.R., 189, 193

Rao, C.R,, 172

Rao, U.L.G., 194

Rasche, R., 181

Ravallion, M., 179, 192

Rawls, J., 179, 184

Rees, J., 179

Rein, M., 178

Relative mean deviation, 25-27, 38, 39, 73,

113, 124, 128, 170

distance concept, 69
non-decomposability, 66, 165
relation to Lorenz curve, 26
standard error of, 130, 193

Reynolds, A., 191

Richmond, J., 194

Richter, W.E, 38

Riese, M., 181
Rietveld, P, 185

Risk, 179

Robertson, C.A., 190
Rodgers, J.D., 179
Rohde, N., 186
Rosenbluth, G., 185
Russet, B.M., 178, 182
Ryscavage, P., 191

Saez, E., 98

Sala-i-Martin, X., 193
Salanié, B., 183

Salas, R., 186

Salem, A.B.Z., 189

Salles, M., 181, 186
Sandstrom, A., 193, 194
Saposnik, R., 184

Sarabia, J.M., 189, 190
Sastre, M., 195

Sastry, D.V.S., 195
Satchell S.E., 195
Savaglio, E., 185
Schechtman, E., 182
Schluter, C., 194
Schmaus, G., 191
Schokkaert, E., 179
Schutz, R.R., 180, 181
Schwartz, J.E., 184

Segal, P., 192

Seid], C., 179

Semi-decile ratio, 182
Sen, A.K., 178-180, 182-185, 191
Senik, C., 183

Shapley value, 195

Shi, L., 196

Shneyerov, A.A., 195
Shorrocks, A.F.,, 179, 184, 186, 192, 193, 195
Shu, B.Y., 190

Sibieta, L., 190

Sicular, T., 195, 196
Sierminska, E., 191

Silber, J., 181, 182, 196
Silverman, B.M., 173
Simon, H.A., 189
Simonoff, J.S., 173
Singer, N.M., 181

Singh, S.K., 159, 189, 194
Skewness, 29, 182, 195
Slesnick, D.T., 179
Slottje, D.J., 181, 183, 186, 189, 190, 192
Smeeding, TM., 191, 192, 194
Smith, J.C., 37

Smith, J.T., 195

Smith, W.P,, 71

Smith, Z., 192

Soares, R.R., 192

231



Index

Social utility, 41, 42, 44, 49, 50, 61,
75,163

Social wage, 5

Social-welfare function, 40, 43, 46-49, 53, 69,
75,82, 143, 144, 148, 183, 187

Solomon, S., 188

Soltow, L., 188

Squire, L., 192

Standard error, 129, 130, 136, 139,
172,193

Stark, T., 29, 179, 190, 191

high/low index, 29, 182

Starrett, D.A., 184

Steindl, J., 188

Stern, N.H., 196

Stevenson, B., 191

Stiglitz, J.E., 183

Stuart, A., 130, 193, 195

Summers, R., 192

Taguchi, T., 190

Takahashi, C., 188

Tang, K.K., 190

Tarozzi, A., 192

Tawney, R.H., 187

Tax returns, 105, 106, 109, 117, 190

Temkin, L., 187

Thatcher, A.R., 188, 189

Theil Curve, 56

Theil, H., 54, 186, 193, 195

Theil index, 57, 64, 65, 68, 74, 113, 128, 154,

166, 185

and distance concept, 185
and transfers, 57
axiomatization, 186
decomposition, 193
estimation of, 194

Thin, T., 86

Thistle, P.D., 76, 184, 194

Thon, D., 15, 180, 186

Thurow, L.C., 178, 189

Tobin, J., 178

Toyoda, T., 195

Trannoy, A., 179, 195

Trede, M., 194

Tsui, K.-Y., 185

Tuomala, M., 183

Tyagarupananda, S., 195

Urrutia, A.M., 185
Utility function, 42, 51, 82, 185
Uusitalo, R., 183

van der Wijk, J., 187

van der Wijk’s law, 91, 93, 158,
161, 187

Van Dijk, H.K., 189

232

van Kerm, P., 178, 194
Variance, 27, 63, 66, 69, 73, 78, 80, 86, 101,
151, 182
and normal distribution, 86
decomposability, 168
of log income, 28
sample, 171
Variance of logarithms, 66, 85, 130, 136, 164,
165, 168, 182, 193
non-decomposability, 169
Victoria-Feser, M.-P., 193, 194
Villeins, 189
Voting, 2, 27, 104, 109, 178

Walden, B., 194
Wallace, S. W., 186
Wan, G., 192
Wealth, 4, 5, 13, 40, 42, 49, 79, 97, 103, 104,
112,117,143, 188, 191
and income, 191
and Pareto distribution, 87, 97,
101, 188
and slaves, 188
data on, 105, 107, 109, 110, 116
definition of, 190
distribution of, 21, 27, 79, 81, 99
valuation of, 5, 111
Webley, P., 188
Website, 177
Weibull distribution, 159
Weisbrod, B.A., 191
Weiss, Y., 188
Welfare index, 6, 41, 42, 44, 49, 61
Welniak, E.J., 191
Welsch, H., 184
Weymark, J.A., 181, 185
Whittle, P., 188
WIDER, 192
Wiles, PJ. de la F, 182, 190
Wilfling, B., 189, 190
William the Conqueror, 189
Williams, R., 14
Wilson, J., 179
Winship, C., 184
Wold, H.O.A., 188
Wolfers, J., 191
Wolff, E., 149
Wolfson, M.C., 185
Wood, J.B., 182
World Bank, 149
Wretman, J.H., 194

Ximing, Y., 196
Yaari, M., 181

Yalcin, T., 179
Yarcia, D., 196



Index

Yitzhaki, S., 181, 182, 193, 195
Yoshida, T., 185

Young, A.A., 182

Yu, L., 192

Yule distribution, 162, 189
Yule, G. U., 80

Zacharias, A., 149
Zhan, L., 192
Zhang, Z., 196
Zheng, B., 179, 195
Zhuang, J., 196
Zipf, G.K., 188

233



	Contents
	List of Figures
	List of Tables
	1. First Principles
	1.1 A preview of the book
	1.2 Inequality of what?
	1.3 Inequality measurement, justice, and poverty
	1.4 Inequality and the social structure
	1.5 Questions

	2. Charting Inequality
	2.1 Diagrams
	2.2 Inequality measures
	2.3 Rankings
	2.4 From charts to analysis
	2.5 Questions

	3. Analysing Inequality
	3.1 Social welfare functions
	3.2 SWF-based inequality measures
	3.3 Inequality and information theory
	3.4 Building an inequality measure
	3.5 Choosing an inequality measure
	3.6 Summary
	3.7 Questions

	4. Modelling Inequality
	4.1 The idea of a model
	4.2 The lognormal distribution
	4.3 The Pareto distribution
	4.4 How good are the functional forms?
	4.5 Questions

	5. From Theory to Practice
	5.1 The data
	5.2 Computation of the inequality measures
	5.3 Appraising the calculations
	5.4 Shortcuts: fitting functional forms
	5.5 Interpreting the answers
	5.6 A sort of conclusion
	5.7 Questions

	A: Technical Appendix
	A.1 Overview
	A.2 Measures and their properties
	A.3 Functional forms of distribution
	A.4 Interrelationships between inequality measures
	A.5 Decomposition of inequality measures
	A.6 Negative incomes
	A.7 Estimation problems
	A.8 Using the website

	B: Notes on Sources and Literature
	B.1 Chapter 1
	B.2 Chapter 2
	B.3 Chapter 3
	B.4 Chapter 4
	B.5 Chapter 5
	B.6 Technical Appendix

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


